
BEAM

Dune NVMe Storage Project

Directory layout and Coding Styles

Project DuneNvme

Date 2020-04-29

Reference DuneNvmeStorageProject

Version 2

Author Dr Terry Barnaby

Table of Contents
1. Introduction..1
2. Directory Layout..2
3. Makefiles..3
4. Vivado Builds...3
5. Software Style..3

5.1. Object orientated Modules...3
5.2. Descriptions and Comments...4
5.3. Naming Convention...5
5.4. Types..5
5.5. Indents and Spacing...5
5.6. File names..6
5.7. Classes..6

6. VHDL Style...6
6.1. Modules..6
6.2. Naming Convention...7
6.3. State Machines...7
6.4. Indents and Spacing...7
6.5. File names..8
6.6. Packages...8
6.7. Descriptions and Comments...8

7. VHDL Simulation with ghdl and gtkview...9

1. Introduction
This document describes the project directory and files layout for Beam FPGA projects along with
information on the programming styles we use.

We typically use VHDL or Verilog and the FPGA hardware description language and ‘C++’ and Python
for the software programming languages for various vendors FPGA’s. We have used the following tools
for the Dune NvmeStorage project.

Dune NVMe Storage Project, Beam Ltd Page: 1 of 10

BEAM
Operating System Fedora 31

VHDL simulation ghdl and Xilinx Vivado 2019.2.1

VHDL synthesis Xilinx Vivado 2019.2.1

C++ compiler Gcc 9.3.1

Python Python 3.7.6

2. Directory Layout
The following shows a typical FPGA core’s directory tree. It includes all of the source code, test code and
build directories to build the FPGA bit file and test software for the generated core. We use the Make
system to manage building both the software and FPGA bitfiles.

DuneNvmeStorageTest
├── Makefile Overall build control makefile

├── doc Documents
│ ├── Readme.pdf Readme source for subtree
│ └── * General document files

├── docsrc Document source files
│ ├── Makefile Makefile to build and install documents including doxygen
│ └── * General document source files

├── src VHDL/Verilog HDL source code
│ ├── *.vhd VHDL source files
│ ├── *.xdc FPGA Constraint files
│ ├── ip FPGA IP core definition source files
│ │ └── *.xci FPGA IP core definition source files

├── test Test software
│ ├── Makefile Test software overall Makefile for build
│ └── *.[h,c++] Test software source files
│ ├── bfpga_driver The Beam bfpga FPGA Linux driver for Xilinx XDMA PCIe core
│ │ ├── Makefile The bfpga software build Makefile
│ │ ├── *.[hc] Bfpga ‘C’ source files

├── sim Simulation of FPGA hardware
│ ├── Makefile Build and run test simulation
│ ├── testbench Simulation testbench sources and output files
│ │ ├── test*.vhd
│ │ ├── test*.sav
│ ├── bin Tool program directory
│ ├── isim Xilinx isim working directory
│ ├── simu Working directory
│ └── work ghdl working directory

Dune NVMe Storage Project, Beam Ltd Page: 2 of 10

BEAM
├── tools Tools directory
│ ├── pciRescan Rescan PCIe bus for PCIe devices
│ └── pciReset Reset Bfpga FPGA device

└── vivado Vivado synthesis build
 ├── Makefile FPGA synthesis build makefile
 ├── vivado.mk FPGA build makefile rules
 ├── rev Directory to hold final build bit files
 └── * Vivado working build directories and files

3. Makefiles
We use the GNU “make” system to manage the building of both software and FPGA bitfiles from the
source code. All of the “Makefiles” have the following major targets along with other specific targets:

• all: Builds the software/FPGA bit file
• clean: Cleans all of the build files
• distclean: A more fuller clean of the directory tree
• install: Install to appropriate location
• program: Program an FPGA with a bitfile

4. Vivado Builds
We also use the make system to build FPGA bit files. In the vivado directory there is a master Makefile
that describes the various source file used for the build and uses the vivado.mk makefile rules file to
generate the FPGA bitfile from the sources. The build tree is compatible with the vivado GUI. So once
the build system, has generated the Vivado projects <project>.xpr file the vivado GUI can be run using
that project definition file.

If new Xilinx IP cores are generated, the make target sync_ip can be used to copy the *.xci files into the
main source tree location.

The “rev” directory contains previous built bitfiles.

Apart from the makefile and vivado.mk all other files in the vivado directory are temporary files created
by the vivado system.

5. Software Style
Beam uses an object oriented style for all of its software designs. We have build an extensive portfolio of
tools and software libraries to help us with this. Some of our key policies include:

5.1. Object orientated Modules
We strongly design the system using a modular structure. Where possible we design these
modules/classes for re-use and where appropriate add them to our standard libraries so they can be further
developed and used in other projects.

Dune NVMe Storage Project, Beam Ltd Page: 3 of 10

BEAM
We use a consumer/producer style when designing modules. When we design a module we design it for
the consumer as first priority. That is we consider what the user of the module would want from it and
provide an API suited to the users needs. The API will use function and data names orientated to the users
domain. The modules internals will use function and data names as suited for internal use only.

Where possible we abstract functional design to higher levels and hide the details of operation in lower
level modules.

All primary user functionality functions would be listed first and the more in-depth, internal functions
listed last so the core functionality is more obvious to see.

5.2. Descriptions and Comments
At the top of each file there should be a description of the file and its contents. This should at a minimum
describe:

• The files name.
• Short Title describing its use.
• The company and author.
• The date the file was originally created.
• Any short copyright notices possibly pointing to an overall code copyright/license description file.
• A short description on what the code does, should be used for and special notes on its operation.

An example for ‘C++’:
/**
 * test_nvme.cpp Test of FPGA NVME access over PCIe DMA channels
 * Fred.Jones, Beam Ltd, 2020-03-01
 * Copyright (c) 2020 All Right Reserved, Beam Ltd, http://www.beam.ltd.uk
 **
 *
 * This is a simple test program that uses the Xilinx xdma Linux driver to
 * access an Nvme device on a KCU105 with the test009-nvme bit file running.
 *
 */

In code comments should be placed where needed to provide notes on the operation. However the code
and the function/variable names used should be as self documenting as possible.

Code comment start markers should match the doxygen comment tag style so that automatically
generated documentation can be used.

/***
 * test_nvme.cpp Test of FPGA NVME access over PCIe DMA channels
 * Fred.Jones, Beam Ltd, 2020-03-01

 */
/**
 * @file test_nvme.cpp
 * @class Control
 * @author Fred Jones (fred.jones@beam.ltd.uk)
 * @date 2020-03-13
 * @version 0.0.1
 *
 * @brief
 * This is a simple test program.

Dune NVMe Storage Project, Beam Ltd Page: 4 of 10

BEAM
 *
 * @details
 * Some details on this.
 */

For class definitions use the following syntax above the class name:

/// Text

and for in-line comments:

///< Text

5.3. Naming Convention
We generally use CamelCase for the names of items (capital letters separate words) while sometimes
using lower case with an underscore separator when we are producing code that will work with existing
code that uses this naming style.

• All type names and constants start with a capital letter.

• All object/variable instances and function names start with a lower case character.

• All pre-processor macros are in upper case.

• All names should be meaningful, but not to long, to help with documenting the operation of the
code.

• All object instance variables should start with the letter “o” to differentiate them from function
arguments which often would have the same basic name.

5.4. Types
All user type names begin with a capital letter. Our standard beam-lib libraries provide fixed bit width
types suitable for micro-controllers as well as large desktop/server processing systems. These include
types such as:

• BUInt32 32 bit unsigned integer
• BInt32 32 bit signed integer
• BUInt8 8 bit unsigned byte

5.5. Indents and Spacing
We use the tab character for intents with editors normally set for 8 spaces per tab, but the user can control
this using their editors controls based on their viewing needs. We try and keep the level of indents
relatively low to aid code readability, moving code to functions where the depth would become excessive.

We try and keep vertical spacing the the minimum, so more code can be seen on a screen. An example C+
+ member function would look like:

BUInt32 MyClass::subtractValues(BUInt32 a, BUInt32 b){
if(a > b){

return a – b;
}
else {

Dune NVMe Storage Project, Beam Ltd Page: 5 of 10

BEAM
return 0;

}
}

Blocks start with the ‘{‘ character on the end of the line starting the block. Then end with a ‘}’ lining up
with the indent level of the whole block.

Spaces are used to separate operator characters and comma characters, but no spaces are used around
brackets to reduce horizontal spacing and to make code more readable (in our eyes!).

5.6. File names
All classes have a “*.h” interface description file and a “*.c++” implementation file with the same name
as the class. Generally only one class is define in a file, but if the class is part of a larger module set, there
may be dependent classes with the same file set.

5.7. Classes
All classes should have a constructor to initialise all member data items. They may also have an init()
function that is used to initialise the runtime state of the objects created at a later stage than object
creation.

Generally all data members and all internal functions should be set to private or protected.

6. VHDL Style
As we program in many software languages as well as in HDL’s we try and keep similar “programming”
styles for both. Unfortunately VHDL is an old and limited language which makes this difficult to achieve.
It is also a case insensitive language, but that does not discount the use of character case to enhance
readability.

6.1. Modules
We strongly design the system using a modular structure. Where possible we design these modules for re-
use and where appropriate add them to our standard libraries so they can be further developed and used in
other projects.

We use a consumer/producer style when designing modules. When we design a module we design it for
the consumer as first priority. That is we consider what the user of the module would want from it and
provide an API suited to the users needs. The API will use generic constants and signal port names
orientated to the users domain. The modules internals will use constants, variables and signa names as
suited for internal use only.

Where possible we abstract functional design to higher levels and hide the details of operation in lower
level modules.

Dune NVMe Storage Project, Beam Ltd Page: 6 of 10

BEAM
All primary user ports would be listed first and in order of functionality. Where possible signal sets will
be abstracted into records.

6.2. Naming Convention
We generally use CamelCase for the names of items (capital letters separate words) while sometimes
using lower case with an underscore separator when we are producing code that will work with existing
code that uses this naming style.

• All type, component names and constants start with a capital letter.

• All signal/variable instances and function names start with a lower case character.

• All global constants are in upper case.

• All names should be meaningful, but not to long, to help with documenting the operation of the
code.

• All ports should have names that reflect their status such as input and output ports.

• Names can end with: “_n” for inverted logic signal, “_i” for input, “_o” for output, “_l” for a local
signal that will be output.

• All record and subtype names should end with “Type” to differentiate them as well as start with a
capital letter.

6.3. State Machines
All state machines should use a StateType to define the state machines state. The state variable/signal
should include the text “state”.

6.4. Indents and Spacing
We use the tab character for intents with editors normally set for 8 spaces per tab, but the user can control
this using their editors controls based on their viewing needs. We try and keep the level of indents
relatively low to aid code readability, moving code to functions where the depth would become excessive.

We try and keep vertical spacing the the minimum, so more code can be seen on a screen. An example
VHDL Process would look like:

-- Process register access
process(clk)
begin

if(rising_edge(clk)) then
if(reset = '1') then

reg_control <= (others => '0');
reg_test1 <= (others => '0');
reg_test2 <= (others => '0');
reg_test3 <= (others => '0');
reg_test4 <= (others => '0');
reg_test5 <= (others => '0');
state <= STATE_START;

else

Dune NVMe Storage Project, Beam Ltd Page: 7 of 10

BEAM
case(state) is
when STATE_START =>

axil1Out.arready <= '0';
axil1Out.rvalid <= '0';
axil1Out.awready <= '0';
axil1Out.wready <= '0';
state <= STATE_IDLE;

end case;
end if;

end if;
end process;

Blocks start with the ‘begin‘ text on the next line starting the block. Then end with a ‘end <type>;’ lining
up with the indent level of the whole block.

Spaces are used to separate operator characters and comma characters, but no spaces are used around
brackets to reduce horizontal spacing and to make code more readable (in our eyes!).

6.5. File names
All modules have a “*.vhd” file with the same name as the VHDL module/component.

6.6. Packages
Where possible we use higher level abstraction for signal sets etc. We normally define records and types
in packages for this purpose. There are normally two packages in use:

• External definitions package: This defines the records, types, constants and functions for a top
level module/component that will be used by external systems. This may be defined by the
external system itself.

• Internal definitions package: This defines the records, types, constants and functions for the
internal modules/components of the tope level module/component. External systems do not see or
use these.

6.7. Descriptions and Comments
At the top of each file there should be a description of the file and its contents. This should at a minimum
describe:

• The files name.
• Short Title describing its use.
• The company and author.
• The date the file was originally created.
• Any short copyright notices possibly pointing to an overall code copyright/license description file.
• A short description on what the code does, should be used for and special notes on its operation.

An example:

-- NvmeStorage.vhd Nvme storage access module
-- Fred.Jones, Beam Ltd. 2020-02-28

Dune NVMe Storage Project, Beam Ltd Page: 8 of 10

BEAM

--!
--! @class NvmeStorage
--! @author Fred Jones (fred.jones@beam.ltd.uk)
--! @date 2020-03-13
--! @version 0.0.1
--!
--! @brief
--! This is a very basic module.
--!
--! @details
--! This is some more detailed description.
--!

In code comments should be placed where needed to provide notes on the operation. However the code
and the function/variable names used should be as self documenting as possible.

Code comment start markers should match the doxygen comment tag style so that automatically
generated documentation can be used.

--! Mux first input

7. VHDL Simulation with ghdl and gtkview
We use ghdl and gtkview for VHDL simulation during development. This provide an easy to use
Opensource simulation environment. The directory sim contains the simulation system that uses the actual
source files in src.

A “make” based system us used to build, run and view the simulation results.

Dune NVMe Storage Project, Beam Ltd Page: 9 of 10

BEAM

Dune NVMe Storage Project, Beam Ltd Page: 10 of 10

	1. Introduction
	2. Directory Layout
	3. Makefiles
	4. Vivado Builds
	5. Software Style
	5.1. Object orientated Modules
	5.2. Descriptions and Comments
	5.3. Naming Convention
	5.4. Types
	5.5. Indents and Spacing
	5.6. File names
	5.7. Classes

	6. VHDL Style
	6.1. Modules
	6.2. Naming Convention
	6.3. State Machines
	6.4. Indents and Spacing
	6.5. File names
	6.6. Packages
	6.7. Descriptions and Comments

	7. VHDL Simulation with ghdl and gtkview

