
BEAM

Dune NVMe Storage Manual

Project DuneNvme

Date 2020-08-17

Reference DuneNvmeStorageManual

Version 1.0.2

Author Dr Terry Barnaby

Table of Contents
1. Introduction..2
2. NvmeStorage core overview..2
3. Dune System Overview...2

3.1. Dune Raw Data..3
4. NvmeStorage core operation..4

4.1. NVMe Storage Access...5
5. NvmeStorage core interfaces...5

5.1. Hardware interface...6
5.2. Clocks and reset...7
5.3. Axi4-Lite bus interface...8
5.4. NVMe write data stream..8
5.5. NVMe ToHost Control/Data stream...10
5.6. NVMe FromHost Control/Data stream..10

6. Control and status registers..11
6.1. Control Register...12
6.2. Status Register..13
6.3. The Error register...13
6.4. Read Blocks System...13

6.4.1. Read Control Register..14
6.4.2. Read Status Register...14

7. NvmeStorage Alternate Bus Interface..14
8. Communication with the Nvme devices..15
9. Using The NvmeStorage Module..16

9.1. Constraints..18
9.2. Building for other platforms...18
9.3. PCIe Gen3 IP Blocks..19
9.4. Core Internal Parameters..19

10. Testing the NvmeStorage core...20
10.1. Building the NvmeStorage test FPGA firmware..20
10.2. Building the NvmeStorage test software..21
10.3. Running the test system..21

11. NVMe Devices...22
11.1. NVMe Write Performance..22
11.2. NVMe Write latency...23

Dune NVMe Storage Design, Beam Ltd Page: 1 of 28

BEAM
11.3. NVMe Drive Lifetime..23
11.4. NVMe Devices Used..24

12. Performance Figures..25
12.1. Nvme Read Performance Figures..26
12.2. Nvme Deallocation Performance...27

13. Notes..28

1. Introduction
This document covers the use of the Dune NVMe Storage Fpga core and the testing thereof. There is also
a design level manual, DuneNvmeStorageDesign which covers detailed implementation information and
general notes.

2. NvmeStorage core overview
The Dune NvmeStorage FPGA core provides the ability to store a data stream of 4 kByte blocks to one or
two Nvme storage devices working in parallel at a rate of 4 GBytes/sec or greater. It then allows the
stored data to be read out at a slower rate to a host computer or FPGA fabric.

The NvmeStorage core is designed to be controlled by a set of registers from a CPU. An AXI4-lite bus
interface provides this ability. It’s data input is designed to come from a raw FPGA binary bit stream
using an 256 bit AXI4 stream interface. The read data is sent over a 128 bit AXI4 stream encoded in PCIe
TLP type packets.

As well as providing data storage, the module also provides direct access to the Nvme devices from a host
computer so that statistics and other housekeeping information can be obtained and the Nvme’s
controlled. This interface is also useful for test purposes. Two AXI4 streams, one sending a form of PCIe
TLP packets to the module from the host and one sending packets to the host from the module provide
this ability. It is expected that these AXI4 streams would be sent to a host’s CPU over DMA stream
interfaces, possibly multiplexed with packets from other FPGA systems.

Ultimately the write performance is limited by the NVMe device in use. Larger NVMe’s will generally
have faster write rates due to internal parallelism and higher endurance but will cost more. The NVMe’s
internal controller and its firmware used will be a significant factor including write latency timings.

Although the NvmeStorage core will support most Nvme drives, to simplify the NvmeStorage design, it
uses a few fixed parameters that need to match the devices used. These are set as parameters to the
NvmeStorage core. See the section NVMe Device s for more information on these parameters.

3. Dune System Overview
The Dune Neutrino experiment has two neutrino detection chambers. Each chamber has a matrix of wires
and electronics to amplify and digitise signals captured from neutrino interactions in the chambers. The
digitised data is passed through optical fibres to 300 FPGA data processing engines installed in
conventional x86 computer servers. The fibres to each FPGA carry around 60 GBits/s of data plus extra
bits for encoding overheads.

Dune NVMe Storage Design, Beam Ltd Page: 2 of 28

BEAM
The Dune project will be designing a custom FPGA board to be installed into the multiple host server
computers. This FPGA board will convert the optical data streams to electrical signals, compress and
process this data. Currently a simple compression algorithm is proposed that provides around a 2:1
compression ratio. The resulting 3.5 GBytes/s, approx, data stream will be stored in a DDR4 RAM based
buffer that can store up to 10 seconds worth of data.

The overall requirement of the NvmeStorage core is to store, real-time, the raw data stream from the
Dune system and be able to, with a slower access rate, read that data. The full system is able to store 120
TeraBytes of incoming data at a rate of 600 GigaBytes per second across its multiple FPGA based data
processing engines.

For each FPGA engine the source data consists of fixed sized chunks (bursts) of data that are from 20 to
200 GBytes in size. These data chunks are stored, round robin fashion, into the NVMe devices with a new
chunk overwriting the oldest chunk written.

The host server computer controls the overall operation of the system via a PCIe interface. It is able to

lock a particular chunk in NVMe storage against subsequent writes if it contains data of interest. The data
from this chunk can then be read out by the host computer.

3.1. Dune Raw Data
For information, the raw data from the Dune sensors consist of 2560 wires sampled with 12 bits
resolution. A super packet containing 64 sets of this data will likely be generated, that includes a start time

Dune NVMe Storage Design, Beam Ltd Page: 3 of 28

Dune
Detector

10 fibres carrying
Data at 60 GBits/s

Multiple fibres to
299 other FPGA Engines

Host computer

Fibre to
Data Stream

Compression
to 3.5 GBytes/s

Buffer
10 seconds

NVMe
Storage

PCIe
Interface

Control
And

Processing

FPGA

Host
Control

BEAM
field and other control information. This will yield data packets of a size near 128 kBytes after
compression.

The NvmeStorage core will store data with a block size granularity of 4 kBytes. If an NVMe error occurs,
maybe due to a large block write latency or other error, the system will continue storing data, if it can,
keeping the block numbers consistent. This means that there could be a set of blocks with in-valid data.
Unwritten data blocks should have there contents set to 0, as long as the Nvme trim/deallocate function
works correctly in the Nvme’s used. So some method of determining if a packet of data is corrupt is
needed. The compression algorithm used will provide variable length blocks. We suggest using a variable
length packet with CRC checksum padded to a 4 kByte boundary. So a data packet for 64 * 2560 x 12 bit
wire samples could look line:

Item Length Notes

Length 32 bits The compressed data length in bytes (packet length is this field
+ timestamp + misc header length + CRC length).

Timestamp 64 bits Timestamp for data

Misc ? Extra header information as needed

Compressed samples ~122 kBytes The compressed data for 64 samples of 2560 wires at 12 bit
resolution.

CRC 32 bits CRC32 checksum

Padding ? Padding to next 4/8 kByte boundary

The actual packet format is irrelevant to the NVMe storage system. It simply stores data in blocks to a 4
kByte boundary. However, due to possible latency issues, the NVMe may have to drop data and this
needs to be handled in a way that allows the host software to use the resulting data stream and understand
when data has been lost. To do this the data stream needs to be blocked into some sized packet with a
suitable header and dropped at that chunk size.

Two possible methods are:

1. Store and drop at the super packet (~128 kByte) level.

2. Store and drop at the storage packet 4 kBytes level, the same as the underlying NvmeStorage
block size. Ideally this 4 kByte block would have some header to allow the software to understand
if some of these 4 k packets are missing. This could be two 16bit values: the super packet number
and the 4k packet number within the super packet.

When a 4k block is sent across the AXI4-Stream, the tlast signal will need to be set in the last clock cycle
of the block.

4. NvmeStorage core operation
On the reset hardware line driven high or the reset bit in the control register set high the NvmeStorage
system will reset its internal state machines and reset the external Nvme drives.

Dune NVMe Storage Design, Beam Ltd Page: 4 of 28

BEAM
After this it is necessary to configure the Nvme drives for operation. Either the core or, if wanted, the host
computer will then need to configure the NVMe devices for operation. The core can be configured to
perform the configuration automatically after reset if the UseConfigure parameter is set to True.

If the host is to perform this task, it can instruct the core to perform this using the Initialise bit in the
control register. Alternatively it can communicate directly with the Nvme drives to accomplish this task
over the PCIe stream interface.

Once initialised the core is ready to accept commands from the software running on the host computer
and the host can perform Nvme reads and writes.

A new data chunk capture and store session is started by setting the DataChunkStart and
DataChunkSize registers to the starting block number and the number of blocks to store. Once set the
DataEnable register bit in the Control register is set high to begin writing the data stream to the Nvme
devices. Data will be written to the NVMe devices until either the DataEnable register bit is reset or the
number of data blocks written equals the programmed DataChunkSize.

The NvmeStorage core will respond to data read requests as commanded by the host CPU writing to the
read control registers or directly to the Nvme device. Note that whilst a data capture process is in progress
the read process will be stalled.

4.1. NVMe Storage Access
The NvmeStorage uses a block size of 4 kBytes. The NVMe storage use a simple integer block number to

address the individually stored blocks. The host’s software will likely split the data storage area into
DataChunk areas of between 20 and 200 GBytes in size. It is recommended to leave a certain amount of
storage at the end of the NVMe reserved for additional free blocks to assist with the NVMe’s wear bad
blocks system and probably reduce write latency. The NVMe devices manage the actual physical
“blocks” used for each logical block and having a percentage that have not been written to provides it
with a greater number of free blocks to use. Note that these blocks should not be written to or they should
be trimmed/deallocated so that the NVMe drives are free to use them.

The data chunks will align to a 4 kByte boundary. It might be good to align them to an NVMe erase block
boundary (possibly 1 MByte depending on NVMe), we will determine this later in the project.

The NvmeStorage modules registers are used to indicate the starting block and how many blocks to write.

5. NvmeStorage core interfaces
The NvmeStorage core has the following interfaces:

Dune NVMe Storage Design, Beam Ltd Page: 5 of 28

Chunk 0 Chunk 1 Chunk 2 Free

BEAM

5.1. Hardware interface
The system will use two NVMe devices operating in parallel to achieve the data rate required. It may be
possible in the future to use a single NVMe device operating over a Gen4 PCIe interface if Ultrascale+ or
Versal FPGA’s are used and a very high performance Nvme is available in the future. The overall design
concept can handle that, but the state machines in the code would need changing to support 256 bit data
widths.

The NVMe PCIe devices require a low jitter PCIe clock for operation. The design can use either a single
shared external 100 MHz PCIe clock driving both NVMe devices or separate external 100 MHz PCIe
clocks. The FPGA’s differential reference clock inputs need to be located near to the GTH/GTY
transceivers that will be used for NVMe PCIe communications using pins that match the requirements of
the particular FPGA used. On an Ultrascale FPGA’s an IBUFDS_GTE3 unit should be used to accept the
differential clocks and feed the PCIe hard blocks nvme_clk and nvme_gt clock inputs. An
IBUFDS_GTE4 should be used on Ultrascale+ FPGA’s.

The GTH/GTY transceivers will have to be located near the PCIe hard blocks used for NVMe
communications in the FPGA so they can be used by the PCIe core. See the Xilinx information on the
particular FPGA that will be used. For the xcku040-ffva1156-2-e, as used on the XKU105 development
board, the pins to be used are fixed and described in the “Test FPGA resources” section of the
DuneNvmeStorageDesign document. Note that on the XKU105 development board the physical PCIe
lanes for one of the NVMe’s do not match the expected MGT ordering.

The PCIe Gen3 hard block is instantiated within the NvmeStorage module for simplicity of usage. We
provide the Platform parameter that can be used to introduce different PCIe interfaces for different
platforms/architectures or you can provide a Pcie_nvme0 and Pcie_nvme1 component to match that of the
Xilinx PCIe Gen3 core.

Dune NVMe Storage Design, Beam Ltd Page: 6 of 28

NVMeStorage

Write data Stream

Clock and reset

AXI-Lite Bus

ToHost control/data stream

NVMe reset

NVMe PCIe clock

NVMe PCIe lanesControl lines

Optional FromHost control stream

BEAM
Note that we need to be able to drive the nvme_reset_n line to the NVMe devices in order to be able to
reset them as some NVMe’s do not have the ability to do this over their communication interfaces.

The pin interfaces will thus be:

Item Bits Notes

nvme_reset_n 1 Output driving external NVMe’s reset

nvme0_clk 1 From 100 MHz PCIe clock

nvme0_clk_gt 1 From 100 MHz PCIe clock for GT’s

nvme0_exp_txp 4 PCIe TX lanes plus

nvme0_exp_txn 4 PCIe TX lanes neg

nvme0_exp_rxp 4 PCIe RX lanes plus

nvme0_exp_rxn 4 PCIe RX lanes neg

nvme1_clk 1 From 100 MHz PCIe clock

nvme1_clk_gt 1 From 100 MHz PCIe clock for GT’s

nvme1_exp_txp 4 PCIe TX lanes plus

nvme1_exp_txn 4 PCIe TX lanes neg

nvme1_exp_rxp 4 PCIe RX lanes plus

nvme1_exp_rxn 4 PCIe RX lanes neg

The PCIe lanes will be operating at 8 GT/s speeds, so track impedance and routing will be critical.

5.2. Clocks and reset
The NvmeStorage block accepts a single 250 MHz clock that all of its control and data interfaces is
synchronised to. The individual NvmeStorageUnit modules have most of their operation driven by a
separate 250 MHz clock derived from the NVMe PCIe external clock input. The NvmeStorage core
handles the clock domain crossings.

There is a single, active high, asynchronous reset signal that is used to reset the core and the external
NVMe devices.

Item Bits Notes

clk 1 250 MHz clock input for interfaces

reset 1 Active high reset input

The reset line should be set high for at least 100 ms to match PCIe reset requirements. This would
normally be sourced, via the PCIe interface to the hosts PERST line.

Dune NVMe Storage Design, Beam Ltd Page: 7 of 28

BEAM
5.3. Axi4-Lite bus interface
The Axi4-lite bus interface provides host access to a set of control and status registers. It has the
following ports all synchronised to the main data clock:

Item Bits Notes

axilOut.awready 1 Write address ready input

axilIn.awvalid 1 Write address valid input

axilIn.awaddr 32 bits, 10 bits
used

Write address, address input

axilOut.wready 1 Write data ready output

axilIn.wvalid 1 Write data valid input

axilIn.wdata 32 bits Write data, data input

axilIn.wstrb N/A Not used

axilIn.bready 1 Write response ready input

axilOut.bvalid 1 Write response valid output

axilOut.bresp 2 Write response, “00” for Ok is output.

axilOut.arready 1 Read address ready output

axilIn.arvalid 1 Read address valid input

axilIn.araddr 32 bits, 10 bits
used

Read address, address input

axilIn.rready 1 Read data ready input

axilOut.rvalid 1 Read data valid output

axilOut.rdata 32 bits Read data, data output

axilOut.rresp 2 Read response, “00” for Ok is output.

When reading data there will be a 8 clock cycle delay before the axilOut.rvalid is set. The delay handles
the clock domain crossing latencies. See the section “NvmeStorage Alternate Bus Interface” for
alternative bus implementations

5.4. NVMe write data stream
This accepts the Dune data on an AXI4-Stream interface at up to nearly 8 GBytes/s. Its specification is:

Item Info Notes

Dune NVMe Storage Design, Beam Ltd Page: 8 of 28

BEAM
Clock 250 MHz

Bus width 256 bits 8 GBytes per second interface (actually peak of 250e6 * 32
Bytes/s)

Data length Multiple of 4
kBytes

The NVMe will expect a stream of data which is a multiple of 4
kBytes, the “last” signal being set on the last data transfer in a 4
kByte block.

The core has a degree of data buffering of the data streams, but this will not be sufficient to handle all
NVMe latencies. The dataIn_ready line will be low when the buffers are full. It is expected that the
FPGA’s large system RAM buffer will have sufficient space to buffer the data for about 1 second to
handle this latency.

If this external buffer is getting too full, some means of dropping data needs to be provided to handle
extreme Nvme latencies. We are unsure as yet what the peak latencies of the Nvme drives used will be.

The core provides the user with two methods of achieving flow control: an externally controlled method
and an internal to the NvmeStorage core method.

If handled by the external logic, this can drop 4 kByte blocks based on the state of its buffer. The external
logic would set the dataDropBlocks input low. It would likely be best to drop complete super packets to
ease data integrity issues and reduce the number of super packets with data loss.

If handled, by the NvmeStorage module, then the external logic would set the dataDropBlocks input
high when the external logic’s buffer is getting too full. When this occurs the NvmeStorage core will drop
complete 4 kByte blocks from the data input FIFO’s and increment its packets dropped register. The
NumBlocksDrop parameter defines how many blocks to drop at a time. It would likely be best to make
this an even number so that blocks are dropped from both Nvme’s equally. The BlocksLost register can
then be directly read by the host’s software at the end of a capture cycle.

We don’t expect this dropping of packets to be used unless there are significant NVMe latencies for some
reason. The NVMe data will have missing packets in this case. It is assumed that the data reading
software can detect this from the packet headers/trailers in the 4 kByte blocks.

Item Bits Notes

dataEnabledOut out 1 This is set high when the NvmeStorage unit is enabled to save
data. Useful to start and reset test signal generators etc.

dataDropBlocks in 1 Set to 1 if the external logics buffer is getting too full. The
NvmeStorage block will drop complete input blocks (two at a
time) and store the number of dropped blocks in its registers
while this is high.
If external logic is handing the dropping of blocks this can be
tied to 0.

AXI4-Stream

dataIn_ready out 1 Ready for data output.

dataIn.valid in 1 Data is valid input

Dune NVMe Storage Design, Beam Ltd Page: 9 of 28

BEAM
dataIn.last in 1 Last word of data packet input. This is used to indicate the end

of a 4 kByte block.

dataIn.data in 256 bits The data input

5.5. NVMe ToHost Control/Data stream
This AXI4 stream is used to send the Nvme stored data blocks to the host computer when reading the
data. It is also used to return Nvme responses to requests issued on the FromHost control stream if this is
used. It is a AXI4-Stream interface at up to 4 GBytes/s. Its specification is:

Item Info Notes

Clock 250 MHz

Bus width 128 bits 4 GBytes per second interface (actually 250e6 * 16 Bytes/s)

Data length 128 Byte
packets

The raw PCIe write data stream will be sent with the Xilinx
PCIe blocks data headers

Item Bits Notes

hostRecv_ready in 1 Ready for data, input.

hostRecv.valid out 1 Data is valid output

hostRecv.last out 1 Last word of packet. Set at the end of each data packet.

hostRecv.data out 128 bits The data output (bits 0-31 Dword0, bits 32-63 Dword 1)

hostRecv.keep out 4 bits One bit for each 32bit word that is present in the 128 bits
being transferred.

The stream passes a form of PCIe TLP packets from the NVMe devices to the host. These are likely to
contain 128 or 256 bytes of data depending on the PCIe max payload size in use on the NVMe interfaces.
The packet structure is based on the Xilinx Pcie Gen3 hard blocks “TLP” packets.

See the section on the Communication with the Nvme for more information.

5.6. NVMe FromHost Control/Data stream
This is an optional stream to send PCIe request packets to the Nvme devices. Requests should match the
Xilinx Pcie Gen3 hard blocks “TLP” request packets. Responses will be sent on the ToHost Control/Data
stream with appropriate headers. This interface can be used to enquire NVMe status information and
configure the NVMe devices. It is a AXI4-Stream interface at up to 4 GBytes/s. Its specification is:

Item Info Notes

Clock 250 MHz

Bus width 128 bits 4 GBytes per second interface (actually 250e6 * 16 Bytes/s)

Dune NVMe Storage Design, Beam Ltd Page: 10 of 28

BEAM
Data length 128 Byte

packets
The raw PCIe write data stream needs to be sent with the Xilinx
PCIe blocks data headers

Item Bits Notes

hostSend_ready out 1 Ready for data, output.

hostSend.valid in 1 Data is valid input. Set to 0 if the control interface is not
used.

hostSend.last in 1 Set to 1 in the last word of the packet.

hostSend.data in 128 bits The data input (bits 0-31 Dword0, bits 32-63 Dword 1)

hostSend.keep in 4 bits One bit for each 32bit word that is present in the 128 bits
being transferred.

Please see the section “Communication with the Nvme” for more details on how to use the fromHost and
toHost interfaces to communicate with the Nvme devices.

6. Control and status registers
The NvmeStorage core is controlled using a set of registers likely accessed from a host computer over the
modules AXI4-Lite bus interface. It is designed for host computer configuration and control of the NVMe
storage system. The interface implements the following registers.

Item Address Bits Notes

ID register 0x0000 32 bits The NvmeStorage storage core type (0x56, Top 8
bits) and the version number (8.8.8 bits)

Control 0x0004 32 bits The control register

Status 0x0008 32 bits The status register

TotalBlocks 0x000C 32 bits The total number of blocks available. This just
returns the value of the NvmeTotalBlocks
parameter.

BlocksLost 0x0010 32 bits The number of blocks lost if the DataDropBlocks
functionality is in use.

DataChunkStart 0x0040 32 bits The data chunk’s starting block number

DataChunkSize 0x0044 32 bits The data chunk size in 4k blocks. Note that the
capture will be limited to the total number of blocks
on the device for safety as set by the
NvmeTotalBlocks parameter.

Error 0x0048 32 bits Information on any error that occurred

NumBlocks 0x004C 32 bits The number of blocks written

TimeUs 0x0050 32 bits The time in microseconds since the start of the

Dune NVMe Storage Design, Beam Ltd Page: 11 of 28

BEAM
capture

PeakLatencyUs 0x0054 32 bits The peak block write latency in microseconds for a
block write request

ReadControl 0x0080 32 bits Read data control

ReadStatus 0x0084 32 bits Read data status

ReadBlock 0x0088 32 bits The starting 4 kByte read block number

ReadNumBlocks 0x008C 32 bits The number of blocks to read

ReadError 0x0090 32 bits Information on any error that occurred

ReadBlocksProc 0x0094 32 bits Current NVMe read bock

ReadBlocksDone 0x0098 32 bits NVMe read bock number completed

Nvme0 Registers. Same as main set above

ID register 0x0100 32 bits The NvmeStorage storage core type (0x56, Top 8
bits) and the version number (8.8.8 bits)

...

Nvme1 Registers. Same as main set above

ID register 0x0200 32 bits The NvmeStorage storage core type (0x56, Top 8
bits) and the version number (8.8.8 bits)

...

The Nvme0 and Nvme1 sets of registers directly access the individual NvmeStorageUnit engines of the
two Nvme devices. The standard set of registers, starting at address 0, provide access to both Nvme0 and
Nvme1 simultaneously when written too. The read values of these will be from Nvme0 only.

6.1. Control Register
The control register controls the overall system.

Item Bits Notes

Reset 0 Set high to reset/initialise the system

Initialise 1 Software set to 1 to start initialisation (Normally initialised by Reset)

DataEnable 2 Enable data input and writing to the NVMe’s when set high. When
reset to 0 data input and writing will be stopped.

The Reset bit, when set high, will generate a 100ms reset pulse that will instigate a reset of the module
and the external Nvme devices.

Dune NVMe Storage Design, Beam Ltd Page: 12 of 28

BEAM
If the core is configured to initialise on reset, then it will itself configure the Nvme devices just after reset.
The Initialise bit will be set high when it has completed this process. Do not communicate with the
Nvme’s before this bit is set high. If the core is not configured to initialise the Nvme’s on reset, then the
software can either manually configure the Nvme’s or set the Initialise bit high to instigate this process.

6.2. Status Register

Item Bits Notes

Reset 0 When high reset is in progress

Initialised 1 When high the system has completed initialisation

DataEnabled 2 Data capture is enabled

Completed 3 Data capture has completed

PciePhyReady 30 The PCIe PHY is ready

PcieLinkUp 31 The PCIe link is up

6.3. The Error register
If no errors occur the Error register (either the write or read engines error register) will be set to 0. If the
Nvme device returns an error status the botton 16 bits will be set to the Nvme’s error status. Please see the
Nvme 1.3 documentation for more details on the error values and what they mean.

6.4. Read Blocks System
The read block system will send the block data over a AXI4-Stream interface to a host computer. The
AXI4-Stream would typically be connected to a Xilinx PCIe DMA core and be read using the Linux
XDMA or other such driver driver.

In order to read data blocks the host computer should set the ReadBlock register to the starting block
number and the ReadNumBlocks to how many blocks to read. When the ReadControl register’s
ReadEnable bit is set the NvmeStorage core will read the data from the Nvme devices and send the
resulting data as PCIe “TLP” packets to the host over the ToHost AXI4 stream.

The top 4 bits of the address field in the Pcie packets header can be used to determine which Nvme unit
the block is from. This will be 0 or 1.

It address bits 20 to 23 are set to 0xF this indicates that the packet block data. The bottom 20 bits of the
address field in the Pcie packets header can be used to determine that the block’s data is in the correct
sequence. (The system could be changed to use 64bit addressing if needed at the expense of more logic).

The PCIe packets data length will be 4096 bytes if the NvmeRead engine has been configured to collate
the Nvme’s 128 Byte PCIe packets into 4096 Byte PCIe packets otherwise they will be 128 Bytes in

Dune NVMe Storage Design, Beam Ltd Page: 13 of 28

BEAM
length. Having the larger packet size reduces software processing overheads and thus is faster and more
efficient.

Note that the data blocks from one Nvme will always arrive in block number order. However, the blocks
from one Nvme drive may be delayed from that of the other Nvme drive depending on the processing
work on-going in the individual Nvme devices.

This module also allows an NVMe block trim/deallocate function to be performed. The host computer
should set the ReadBlock register to the starting block number and the ReadNumBlocks to how many
blocks to trim/deallocate. The PerformTrim bit in the control register should be set and the Enable bit set.
When complete the status register’s complete bit will be set.

6.4.1. Read Control Register

Item Bits Notes

Enable 0 Set high to start reading or trimming data from the given block
number. Set low to stop reading/trimming.

PerformTrim 1 Set high to perform a trim, set low to perform a read

6.4.2. Read Status Register

Item Bits Notes

Enabled 0 When high indicates the reading/trimming of data is in progress.

Complete 1 Set high when the read/trim has completed

7. NvmeStorage Alternate Bus Interface
The modules bus interface type can be changed by implementing a different NvmeStorage.vhd module
with the appropriate bus interface connections. This could be used to support, say, a Wishbone or IPBus
interface.

The NvmeStorage mode primarily implements the bus interface, data stream splitting and NVMe control/
reply stream multiplexing/demultiplexing functions for the two NVMe devices. There are only a small set
of changes needed for a different bus interface as most of the register read/write and CDC logic is in the
NvmeStorageUnit.vhd layer.

The NvmeStorageUnit module has a very simple bus interface comprising:

regWrite : in std_logic; --! Enable write to register
regRead : in std_logic; --! Enable read from register
regAddress : in unsigned(5 downto 0); --! Register to read/write
regDataIn : in std_logic_vector(31 downto 0); --! Register write data
regDataOut : out std_logic_vector(31 downto 0);--! Register contents

There are two strobes for control, a regWrite strobe and a regRead strobe, a single address and a data in
and data out set of signals.

To write to a register the regAddress and regDataIn values should be set from the bus interface and the
regWrite pulsed high for one or more clock cycles. To read a register the regAddress and regDataIn

Dune NVMe Storage Design, Beam Ltd Page: 14 of 28

BEAM
values should be again set from the bus interface and the regRead pulsed high for one clock cycle. In the
case of a read the regDataOut will become stable after 8 clock cycles the latency due to the CDC crossing
system used.

So the NvmeStorage.vhd logic should handle the following:

1. Set the regAddress and regDataIn values from the bus interface.

2. Pulse the appropriate NvmeStorageUnits regWrite strobe dependent on the write address when the
regAddress and regDataIn are stable.

3. Store any writes to any control register as the overal NvmeStorageUnit’s reset line is driven by bit
0 of this register.

4. When a read register operation is performed, set the buses appropriate read ready control line at
least 8 cycles after the regRead line has been pulsed high.

8. Communication with the Nvme devices
This section describes how to communicate directly with the Nvme devices over the FromHost/ToHost
Pcie packet streams. The DuneNvmeStorageDesign document should be consulted along with the Xilinx
PCie Gen 3 hard block document PG156 and the Nvme Express Revsion 1.3 specification document. A
general knowledge of how PCIe works and its TLP packets is helpful.

In essence the host computer can send Nvme register read/write requests and also send an Nvme admin or
read/write data IO queued request over the FromHost AXI4 stream. The NvmeStorage’s request/reply
queue engine can be used to simplify sending and receiving queued requests and replies. Responses to
these request packets are sent back to the host over the ToHost AXI4 Stream.

The stream passes a form of PCIe TLP packets from the NVMe devices to the host. These are likely to
contain 128 or 256 bytes of data depending on the PCIe max payload size in use. The packet structure is
based on the Xilinx Pcie Gen3 hard blocks “TLP” packets with some alteration to the meaning of some of
the bits for usage in the NvmeStorage system. The test software uses data structures to define these
packets. The following describing the main fields used in a PCIe request:

DWord
(32bits)

Value Description

0 0xNSAAAAAA The destination address with destination identifiers. This will have
the NVME identified in the topmost 4 bits, the destination stream
engine in bits 24-27 and the byte address in the remaining 24 bits.
Note that for read data blocks this address will wrap around as the
upper address bits, above bit 23, will not be provided.

1 0 Not used

2 0x000SRCCC S: Source Stream, R: request type and CCC: DWord count (request
is 5 bits count is 11 bits)

3 0x000000TT TT: Request tag

4 -n ... The following DWords contain the data

Dune NVMe Storage Design, Beam Ltd Page: 15 of 28

BEAM

When replies to requests are received from the ToHost stream the replies, if there are any, will be the raw
PCIe reply packets from the NVMe devices. These are likely to contain 128 or 256 bytes of data
depending on the PCIe max payload size in use. These will have the following data structure:

DWord (32
bits)

Value Description

0 0x0BBBEAAA B: Byte count, E: Error, A: Lower bits of the address

1 0x000SUCCC S: To Stream, U: Status, C: DWord count

2 0x800000TT Reply bit set and T: request tag. Bit 31 is set to 1 for replies
and 0 for requests so the type of packet can be determined.

3 -n ... The following DWords contain the data

Bit 95 of the header (DWord 2 bit 31) is set to 1 for replies and 0 for requests so the type of packet can be
determined.

So to read one of the NVMe’s registers you need to send a Pcie read request packet to the appropriate
NVMe device. The R read request type is “0”, the N field in the address would be 0 or 1 depending on the
NVMe you wish to communicate with, the stream S in word 0 is “0” for the NVMe engines and the
AAAA field would be set to the registers address. The source stream “S” in word 2 should be set to “1”
(The host) and the CCC count would be set to “1” to read one 32bit value. You will receive a reply packet
with the registers contents in the first DWord or data.

To send a queued request to an NVMe, you would send a PCIe write request to the address with S set to 2
(The NvmeQueue engine). The data in this write request will be the 64 Byte NVMe queue entry.

If a queued reply is sent by the NVMe, you will receive a PCIe write request to the address 0x0210xxxx
the data contents of which will be the 16 byte NVMe queued reply.

Viewing the test software will help with understanding how this works. In the future a simple API library
could be generated to hide the lower level details.

9. Using The NvmeStorage Module
The NvmeStorage system is made up of a number of modules implemented in VHDL source files. The
top most module, that the user would interface to, is the NvmeStorage module whose interfaces are
described in this document. This is implemented in the NvmeStorage.vhd file. There is also the
NvmeStoragePkg.vhd file that defines overall interface’s and parameters for the system that should be
included in code using the NvmeStorage module.

The NvmeStorage module has the following configurable parameters:

Parameter Default Description

Simulate False Generate simulation core for debug

Dune NVMe Storage Design, Beam Ltd Page: 16 of 28

BEAM
Platform Ultrascale The platform name for platform specific code. Currently has

support for “Ultrascale” and “Ultrascale+”

ClockPeriod 4 ns (250 MHz) Clock period for timers. used for statistics information and reset
timing

BlockSize 4096 The system block size. Must be a multiple of the physical Nvme
block size (typically 512). Max supported size is 4096 at the
moment.

NumBlocksDrop 2 The number of input blocks to drop when dataDropBlocks is
high. This is triggered on the last signal of odd numbered
blocks.

UseConfigure False The core will configure the Nvme devices just after reset when
this is set to true.

NvmeBlockSize 512 The NVMe's formatted block size

NvmeTotalBlocks 104857600 The total number of 4k blocks available. This is return in the
registers to aid the software’s usage of the core and also limits
the maximum number of blocks that can be written in a data
chunk to protect drives from excessive writes.

NvmeDoorbellStride 4 The doorbell register stride

FPGA modules/files used:

Module File Description

NvmeStoragePkg.vhd Overall module definitions

NvmeStorage NvmeStorage.vhd The modules top level API

NvmeStorageIntPkg.vhd Internal definitions for module

NvmeStorageUnit NvmeStorageUnit.vhd A single NVMe control engine

NvmeConfig NvmeConfig.vhd Configure a NVMe engine

NvmeWrite NvmeWrite.vhd Write the data to the NVMe with trim

NvmeRead NvmeRead.vhd Read data from the NVMe

NvmeQueues NvmeQueues.vhd Implement the shared memory NVMe
request and reply queues

StreamSwitch StreamSwitch.vhd Packet switch between modules

NvmeStreamMux NvmeStreamMux.vhd Multiplex PCIe streams between the two
NVMe units

PcieStreamMux PcieStreamMux.vhd Multiplex PCIe request and reply packets

RegAccessClockConverter RegAccessClockConvertor.vhd Register access CDC unit

AxisClockConverter AxisClockConverter.vhd AXI4-Stream CDC unit

AxisDataConvertFifo AxisDataConvertFifo.vhd 256 bit to 128 bit data input FIFO’s

Ram Ram.vhd Simple BlockRAM implementation

Dune NVMe Storage Design, Beam Ltd Page: 17 of 28

BEAM
Fifo Fifo.vhd Simple register and BlockRAM based

FIFO

IP Blocks

Pcie_host Pcie_host.xci Xilinx PCIe DMA host interface

Pcie_nvme0 Pcie_nvme0.xci Xilinx PCIe Gen3 hard block 0

Pcie_nvme1 Pcie_nvme1.xci Xilinx PCIe Gen3 hard block 1

Axis_clock_converter Axis_clock_converter.xci Xilinx ACXI4-Stream CDC

Misc for test harness

DuneNvmeTop DuneNvmeTop.vhd Test harness top level. One per board type

DuneNvmeTop.xdc Test harness constraints. One per board
type

Testdata TestData.vhd Test data source. Incrementing 32 bit
number

NvmeSim NvmeSim.vhd A simple NVMe simulation for test
purposes

9.1. Constraints
The DuneNvmeTop.xdc file contains the overall constraints for the test core. The IP blocks provide
individual block constraints as needed.

For the PCIe Gen3 hard blocks, the IP modules normally provide the location constraints for the PCIe
lane MGT’s. However on the KCU105 evaluation board used the PCIe lanes 1 and 2 (of 0, 1, 2, 3) are
swapped relative to the expected Quad layout. So we have overridden the PCIe Blocks location
constraints for both blocks to be consistent.

9.2. Building for other platforms
The current source code has support for the Xilinx KCU105 and HTK K800 FPGA boards with the
Design Gateway AB17-M2FMC and Ospero NVMe daughter cards. There are separate directories in the
source code tree holding the files for these different hardware platforms.

Most of the NvmeStorage module’s code is generic VHDL. However it does use a few Xilinx IP blocks.
When building/porting to another platform these will likely need to be changed. The blocks are the PCIe
Gen3 hard blocks used for NVMe interfacing and the Axis_clock_converter block. For the test harness
the host’s Pcie_host interface IP block may also need changing.

See the NvmeStorageDesign manual for details.

Dune NVMe Storage Design, Beam Ltd Page: 18 of 28

BEAM
9.3. PCIe Gen3 IP Blocks
The NvmeStorage system makes use of the Ultrascale PCIe Gen3 hard block IP to communicate with the
NVMe devices. These have been configured using the Vivado GUI tool and the *.xci files so created
saved as source code. These blocks will likely need replacing with slightly different IP on different Xilinx
FPGA’s.

The PCIe Gen3 hard block is instantiated within the NvmeStorageUnit module for simplicity of usage.
We provide the Platform parameter that can be used to introduce different PCIe interfaces for different
platforms/architectures or you can provide a Pcie_nvme0 and Pcie_nvme1 component to match that of the
Xilinx PCIe Gen3 core in separate files during the build.

We only use the PCIe Gen3 hard block for communicating with the NVMe’s and thus use very little of the
blocks features. We have disabled most of the blocks signal ports to reduce the component’s interface
pins. Some of the core parameters configured include:

Parameter Value Description

Device/Port Type Root Port … Complex The PCIe interface behaves as a root port complex

Number of Lanes 4 The number of PCIe lanes used

Link Speed 8.0 GT/s The Gen3 link speed

AXI-ST Interface width 128 bit The AXI4-Stream width

AXI-ST Interface freq 250 MHz The interface clock frequency

Core Clock Freq 500 MHz The internal core clock frequency

Enable Client Tag On The core manages the header tags

PF0 Max Payload Size 1024 Bytes Could be less as NVMe’s often only support up to
256 Bytes. We are only using 128 Bytes at the
moment.

PF0 Interrupt Pin None No interrupts used

Disable GT Channel
Constraint

True We override the locations of the hard block and
transceivers in the overall designs constraint file.

Interface Parameters All off All the extra interfaces are turned off

Note that on the KCU105 evaluation board the PCIe lanes for MGT Quad 227 have lanes 1 and 2 (of 0, 1,
2, 3) swapped around from the expected layout. We thus override the Xilinx IP wizards local location
constraints for these IP blocks and have added them to our main build constraints file.

9.4. Core Internal Parameters
As well as the main modules parameters provided at the NvmeStorage level, there are some module
specific parameters that can be set for debug or testing purposes or for other reasons. Some of these
include:

NvmeWrite/DoTrim If set to True perform a set of trim/deallocate commands for the entire

Dune NVMe Storage Design, Beam Ltd Page: 19 of 28

BEAM
region to be written too at the start of a write

NvmeWrite/DoWrite If set to false don’t actually write any data to the Nvme’s. Can be used
for data input stream testing or testing the DoTrim feature.

NvmeWrite/SimWaitReply Instead of queuing 8 x block write requests, perform one at a time

NvmeWrite/SimDelay Input data delay after each packet for simulation tests

NvmeRead/SendFullBlock When set to true collates the small 128 Byte PCIe packets into a 4096
Byte full block PCIe packet. Note that this would not normally pass
through a PCIe hardware layer but is fine across a packet stream.

See the design document and the code for more information.

10. Testing the NvmeStorage core
The files for the NvmeStorage system provide a test software and FPGA implementation for a Xilinx
KCU105 evaluation board or a HTK K800 board with either an AB17-M2FMC or Ospero dual NVMe
FMC adapter board all installed in a suitable PC running Fedora31 Linux. The NvmeStorageDesign
manual provides details of this setup including the hardware configuration needed and the
NvmeStorageTestSoftware manual provides details of the test software.

10.1. Building the NvmeStorage test FPGA firmware
The FPGA build environment is based around using the simple “make” system to configure and
optionally build the FPGA bit file using the Xilinx Vivado 2019.2 toolset. It is also possible to use the
Vivado GUI to build and inspect the FPGA code once the make system has generated the initial project
file and project directories.

The top level Makefile defines overall build configuration parameters that will be overridden by the
parameters in a file named Config.mk if this is present. A Config-template.mk file is provided as a
template. Copy this file to Config.mk and edit as needed. The three main parameters are the
BOARD_NAME and CARD parameters which defines the platform to build for and thus the FPGA bitfile
programming target, the Vivado tools location in VIVADO_PATH and the in VIVADO_TARGET which
defines what FPGA programming target to use. There are currently two BOARD_NAME settings
supported:

• KCU105: For the Xilinx KCU105 board.

• K800: For the HTK K800 board.

There are two NVMe CARD settings supported:

• AB17-M2FMC: For the Design Gateway AB17-M2FMC NVMe card.

• Opsero: For the Opsero OP47 NVMe card.

The commands to build the firmware when run form the directory containing the DuneNvme code are:

1. Change to the vivado directory: “cd vivado”

Dune NVMe Storage Design, Beam Ltd Page: 20 of 28

BEAM
2. Create the Vivado project file: “make project”

3. Build the firmware: Either use “make all” or use “make project” followed by using the Vivado
GUI with the appropriate *.xpr file so created.

4. Program the FPGA “make program”. This assumes the FPGA’s JTAG USB port is connected to
the host and the VIVADO_TARGET parameter is set correctly.

The builds take place in the Projects directory.

10.2. Building the NvmeStorage test software
A simple test program along with a simple Linux FPGA access driver is provided for testing the
NvmeStorage system. This is located in the “test” directory. To build the software:

1. Change to the test directory: “cd test”

2. Make sure all of the needed development packages are installed. “make installPackages“ will do
this.

3. Build the Linux FPGA driver for the current kernel: “make driver”

4. Build the test program test_nvme: “make”

10.3. Running the test system
Once the hardware platform is setup, the FPGA bit file built and the software built the system can be
tested.

One issue with using PCIe express FPGA interfaces in a PC hosted environment is that the BIOS and
Linux kernel need to have seen the PCIe device at boot time. There are some ways around this but they
depend on the particular PC’s PCIe root complexes hardware, the BIOS and the Linux kernel in use.
Some options include booting the FPGA from ROM initially with a suitable PCIe design or using the
Xilinx Tandem PCIe system. However on most systems a simple soft reboot of the PC once the FPGA has
been loaded with the PCIe firmware suffices. Once the system is up and running with the PCIe core then
normally the FPGA can be reloaded without reboot as longs as the kernel module is reloaded and the
PCIe device is reset and the PCIe bus is re-scanned. If major changes to the PCIe bus layout are made, a
soft reboot will be required.

So the process to perform the test from a running Linux system is:

1. Change to the vivado directory: “cd DuneNvme/vivado”

2. Program the FPGA: “make program” or use the Vivado GUI to do this from the host or a remote
system”. You also may use a different method to program the FPGA as needed.

3. Reboot the Linux system when logged in as root: “reboot”

4. The Xilinx PCIe XDMA engine should show in lspci as: “Serial controller: Xilinx Corporation
Device 8024”

Dune NVMe Storage Design, Beam Ltd Page: 21 of 28

BEAM
5. Change to the test directory: “cd DuneNvme/test”

6. Load the FPGA Linux driver as root: “make driver_load”

7. Run the test program: “./test_nvme [options] <test name>”

Note the bfpga driver’s bfpga.rules file can be copied to /etc/udev/rules.d to set the permissions of the
device entries for a normal user. Alternatively you can manually use chmod for this if you want to access
the drive as a normal user. The device entries are: /dev/bfpga0, /dev/bfpga0-recv0 and /dev/bfpga0-send0.
You can also install the driver into the system using the “make install” command in the drivers directory.
However having manual driver install is useful for developing and experimenting.

The test_nvme program is a simple test program that was used during initial test work and so has lots of
extra test code included. It has documentation in the DuneNvmeStorageTestSoftware manual and in the
doxygen software documentation area. Some simple commands include:

• “test_nvme -s 0 -n 262144 capture”: Starts processing the FPGA TestData stream writing 1GByte

• “test_nvme -v -s 0 -n 10 -o data.bin read”: Reads 10 blocks starting at block 0 into the file data.bin
validating the data blocks contents and displaying partial block contents (The -v).

11. NVMe Devices
The NvmeStorage core is designed to work with most Nvme drives that conform to the PCIe Gen3
physical interface and the NVMe 1.3 protocol. However to simplify the design some hard coded NVMe
drive parameters are used and set as parameters to the block. These are:

Parameter Default Description

NvmeBlockSize 512 The NVMe's formatted block size. Most drives appear to support
this and are by default formatted like this. Some drives support
4096 Bytes. This may be more efficient on some drives, but on the
drives we have tested it doesn’t seem to make much difference
when simply streaming data. Using a large block size would allow
NvmeWrite to write a larger chunk at a time.

NvmeTotalBlocks 104857600 The total number of 4k blocks available. This is 400 GBytes so
would leave 100 GBytes free in each 250 GByte NVMe if two 250
GByte NVMe’s are used or 300 GBytes free in each 500 GByte
NVMe if two 500 GByte NVMe’s are used. This restricts the
maximum number of NvmeWrite data chunk size, for protection,
and is returned to the software in registers for information.

NvmeDoorbellStride 4 The doorbell register stride. Most drives use this value.

11.1. NVMe Write Performance
For the Dune NvmeStorage system we require a sustained write speed of greater than 3500 MBytes/s over
200 GBytes of data. It is difficult to get sustained write performance data, most figures just give the write
to RAM cache performance. However from Internet searches it appears that as at 2020-05-22 the fastest
commodity PCIe Gen4 drives have a maximum sustained write speed of 2500 MBytes per second whilst

Dune NVMe Storage Design, Beam Ltd Page: 22 of 28

BEAM
the interface can support 4400 MBytes per second. These drives use the Phison E16 controller. So at the
moment using two Nvme drives in parallel on a PCIe Gen3 or Gen4 interface looks to be the best system.
In the future a single NVMe on a PCIe Gen4 interface could be used.

Some performance figures are listed below.

11.2. NVMe Write latency
When a write to an NVMe block is made the NVMe controller must find an empty storage area within the
SSD that it can write the data to. Generally NVMe’s use a large internal erase block size (possibly > 1
MByte) which is the minimum amount of storage area that can be erased at once. Blocks will be written
into these erase blocked sized chunks and their locations stored. This makes random block writes tricky to
perform and subject to latencies as the NVMe’s internal controller juggles these erase block sized chunks
and where the blocks can be written to most efficiently.

The Dune NVMe storage requirements are simpler in that blocks are written sequentially to a fixed sized
area of NVMe storage that can be deallocated prior to writing the data. The NvmeStorage system sends
trim/deallocate requests to the Nvme for the entire data capture chunk (200 GBytes) at the start of a
capture run. This allows the Nvme to get on with erasing the necessary erased blocked sized chunks prior
to writing the blocks into them. This aids write performance reducing the latency to erase the blocks on
the fly and perhaps juggle the block writes into available areas.

Note that on some NVMe drives, when a block is marked as deallocated it will return 0’s in the block.

However, the NVMe algorithms are unknown and block writes may fail and require reallocation due to
SSD wear. This will likely result in increased write latency occasionally and probably more often as the
drive ages. Unfortunately peak latency figures are not given or controlled. The NvmeStorage system
relies on a large 1 second data buffer and the ability to drop the writing of blocks if a large write latency
occurs. The NvmeStorage measures the peak write block latency and provides this in a register.

11.3. NVMe Drive Lifetime
One major issue with SSD storage as used in NVMe devices is that they wear out when writing data to
them. The devices are normally specified with an endurance value to define this. With the very fast and
large streaming data writes the Dune system uses the NVMe endurance has to be carefully considered.

For a typical commodity Samsung 970 Pro MLC 512 GByte device the wear rating is 600 TByte. Two of
these drives provide 1 TByte of storage (2 x the requirement) and should be able to store roughly (2 *
600T) / 200G = 6000 data chunks before failure. So the lifetime of these drives will be approximately:

• One data chunk per day = 16 Years.

• One data chunk an hour = 250 days

• Continuous data storage =6 days

If instead 256 GByte NVMe’s are used (so that 2 x 200 GByte data chunks can be stored) then the NVMe
lifetime would be haved from that above.

Dune NVMe Storage Design, Beam Ltd Page: 23 of 28

BEAM
If instead 1T Byte NVMe’s are used (so that 8 x 200 GByte data chunks can be stored) then the NVMe
lifetime would be doubled from that above.

As the drives wear out blocks will become unavailable. To extend the lifetime and reduce larger latencies
later in life restricting the total number of blocks used on a drive is likely to be beneficial. So say writing
just 4 x 100 GByte areas on a 500 GByte drive (4 x 200 GBytes for two 500 GByte drives) thus reserving
100 GByte per drive. We assume here that the drive will use all of the blocks available. Note that the
reserved block area should be marked as unused (deallocated/trimmed) which we presume they are from
new.

11.4. NVMe Devices Used
The NVMe devices used during the development and testing were (all 500 GByte versions):

Manufacturer Device Version Endurance Notes

Samsung 970 Pro, 500
GByte

Gen3,1.3 600 TB 2.3 GBytes/s, 5.2W, Samsung Phoenix controller
MaxPayloadSize: 256 Bytes
PcieCapabilities: 0x70
DoorbellStride: 4
Num 512 Blocks: 1000215216
Actual write performance about: 2200 MBytes/s
Note only supports 512 Byte blocks.

Seagate FireCuda 520,
500 GByte

Gen4,1.3 850 TB 2.5 GBytes/s, Phison E16 Controller
MaxPayloadSize: 256 Bytes
PcieCapabilities: 0x80
DoorbellStride: 4
Num 512 Blocks: 976773168
Actual write performance: about 2300
MBytes/s.
Has issues writing > 100GByte when partially
full. Speed drops to 1000 or even 500 MBytes/s

WD Black SN750,
500 GByte

Gen3,1.3 300 TB 2.6 GBytes/s, WD NVMe Architecture
Controller
MaxPayloadSize: 512 Bytes
PcieCapabilities: 0xC0
DoorbellStride: 4
Num 512 Blocks: 976773168
Actual write performance: about: 1024 MBytes/
s

Others

Seagate FireCuda 520,
1TByte

Gen4,1.3 1800 TB 4.4 GBytes/s, Phison E16 Controller

Samsung 970 EVO
Plus

Gen3,1.3 300 TB 3.2 GByes/s, 9W, Samsung Phoenix controller

Dune NVMe Storage Design, Beam Ltd Page: 24 of 28

BEAM
Seagate BarraCuda

510
Gen3,1.3 320 TB 2.1 GBytes/s, 4.6W, Phison E12 Controller

Corsair Force MP510 Gen3,1.3 800 TB 2 GBytes/s, 4.8W, Phison E12 Controller

Intel Optane SSD
905P

List of some other devices: https://en.wikipedia.org/wiki/List_of_Intel_SSDs

Notes on the devices:

• Black SN750: This only had around 1024 MBytes/s write performance.
• Seagate FireCuda 520: This has performance issues when writing > 100 GBytes to a partially

full drive. Deallocating all of the space helps but keeping at least 100 – 200 GBytes free on a 500
GByte device is needed to keep write performance up.

• Samsung 970 Pro: This drive worked best for the Dune usage and so was used in the
performance tests.

During testing work we noticed write performance issues with the Seagate FireCuda 520 drives. After
investigation and communications with the manufacturer we found out the following (rough description
that may be wrong as details are hard to get hold of):

• The Seagate FireCuda 520 uses TLC NAND FLASH (3 bits per cell) rather than the MLC NAND
FLASH (2 bits per cell) of the Samsung 970 Pro.

• Writing to TLC is slower than writing to MLC (maybe 500 MBytes/s vs 2 GBytes/s ?).
• To improve write performance the FireCuda dynamically configures 1/3rd of its free space as SLC

cache (1 bit per cell) which can store 1/3rd of the amount as if it was configured as TLC (3 bits
per cell). The write performance to the SLC cache is > 2 GBytes/s.

• As the blocks are written to the SLC cache they are copied/converted to TLC storage. This will
carry on after the write has completed.

• So with a 500 GByte drive with 100 GByte previously written and in TLC it now has (400/3) =
130 GBytes of SLC cache to write to. (Not sure if this is actually sized as (400/8) = 50 GBytes ?).
As the write progresses it will, over time, copy/convert this to 100 GBytes in TLC.

As new NVMe devices are developed it is expected more will move from using MLC to TLC type storage
and hence probably use a similar SLC/TLC caching system. The Dune project, requiring fast real-time
write performance over a large chunk of data, will thus need to be careful with the actual NVMe to use.
This also may mean using much larger devices than actually needed for the raw storage.

Note also that SLC devices are faster and last longer than MLC devices which in turn are faster and last
longer than TLC devices. So there is a cost vs type vs longevity trade off.

12. Performance Figures
These tests were carried out using two Samsung 570 Pro 500 GByte drives and two Seagate FireCuda
520, 500 GByte NVMe drives fitted to an Xilinx KCU104 FPGA board. The NvmeStorage firmware and
test software was the pre-release 0.9.1 version and carried out on 2020-06-12 with GitId:
bc89250c1fd1e0b448a26b6fa373fbabdf8f3352.

Dune NVMe Storage Design, Beam Ltd Page: 25 of 28

https://en.wikipedia.org/wiki/List_of_Intel_SSDs

BEAM
Data capture and write performance writing 200 GBytes to a deallocated NVMe device. The drives have
first had all blocks deallocated and the NVMe’s left for 5 minutes to completely complete erasing of the
blocks. So this gives the fastest possible capture and write performance. The block size was NvmeStorage
4k for these tests (512 Byte Nvme block size).

Seagate FireCuda 520, 500 GByte initial performance (Issues after these writes)
Write FPGA data stream to Nvme devices. nvme: 2 startBlock: 0x00000000 numBlocks: 52428800
20:38:38.282: StartBlock: 0, DataRate: 4530.139 MBytes/s, PeakLatancy: 10535 us
20:39:41.226: StartBlock: 52428800, DataRate: 4582.337 MBytes/s, PeakLatancy: 3764 us

Samsung 970 Pro, 500 GByte
Simple capture test loop: 200 GByte no trim
NvmeTrim: nvme: 2 startBlock: 0 numBlocks: 52428800
NvmeTrim: nvme: 2 startBlock: 52428800 numBlocks: 52428800

nvmeCapture: Write FPGA data stream to Nvme devices. nvme: 2 startBlock: 0 numBlocks: 52428800
08:49:51.070: StartBlock: 0, DataRate: 4410.940 MBytes/s, PeakLatancy: 6927 us
08:50:48.251: StartBlock: 52428800, DataRate: 4366.160 MBytes/s, PeakLatancy: 9734 us
08:51:45.407: StartBlock: 0, DataRate: 4365.319 MBytes/s, PeakLatancy: 9507 us
08:52:42.688: StartBlock: 52428800, DataRate: 4787.418 MBytes/s, PeakLatancy: 9964 us
08:53:39.844: StartBlock: 0, DataRate: 4367.115 MBytes/s, PeakLatancy: 4290 us
08:54:37.024: StartBlock: 52428800, DataRate: 4365.441 MBytes/s, PeakLatancy: 3920 us
08:55:34.281: StartBlock: 0, DataRate: 4359.005 MBytes/s, PeakLatancy: 7085 us
08:56:31.561: StartBlock: 52428800, DataRate: 4359.715 MBytes/s, PeakLatancy: 7650 us
08:57:28.817: StartBlock: 0, DataRate: 4359.584 MBytes/s, PeakLatancy: 5288 us
08:58:26.098: StartBlock: 52428800, DataRate: 4358.331 MBytes/s, PeakLatancy: 7907 us
08:59:23.354: StartBlock: 0, DataRate: 4356.805 MBytes/s, PeakLatancy: 10047 us
09:00:20.534: StartBlock: 52428800, DataRate: 4362.351 MBytes/s, PeakLatancy: 5001 us
09:01:17.790: StartBlock: 0, DataRate: 4361.404 MBytes/s, PeakLatancy: 9720 us

12.1. Nvme Read Performance Figures
The Nvme read performance is primarily dictated by the FPGA core to Linux software performance. The
performance figures below are using the simple test software with the simple bfpga Linux driver and the
Xilinx xdma core. The bfpga Linux drive in particular is simple and performs double buffering with a
memory copy so is not that efficient.

NvmeRead: nvme: 2 startBlock: 0 numBlocks: 5242880
Read complete at: 5242880 blocks
NvmeRead: rate: 476.061220 MBytes/s
NvmeRead: nvme: 2 startBlock: 0 numBlocks: 5242880
Read complete at: 5242880 blocks
NvmeRead: rate: 467.960966 MBytes/s
NvmeRead: nvme: 2 startBlock: 0 numBlocks: 5242880
Read complete at: 5242880 blocks
NvmeRead: rate: 476.618854 MBytes/s
NvmeRead: nvme: 2 startBlock: 0 numBlocks: 5242880
Read complete at: 5242880 blocks
NvmeRead: rate: 474.601276 MBytes/s
NvmeRead: nvme: 2 startBlock: 0 numBlocks: 5242880
Read complete at: 5242880 blocks
NvmeRead: rate: 468.334678 MBytes/s
NvmeRead: nvme: 2 startBlock: 0 numBlocks: 5242880

Dune NVMe Storage Design, Beam Ltd Page: 26 of 28

BEAM
12.2. Nvme Deallocation Performance
The NVMe block deallocation/trim command takes very little time to operate and return its status. Two
commands are available the Nvme Write 0’s command and the Nvme Dataset management command.
However, it takes significantly longer for the NVMe drive to actually erase these deallocated blocks and
block erasure is necessary for a high sequential write performance. The different device types behaved in
different ways. We used a simple test script: test_deallocate.sh to experiment with this. test_deallocate.sh
simulates the NVMe usage in the Dune system. What this does is:

1. Either: Initially capture and write data to 800GBytes of the total 900 GBytes available on both of
the the NVMe drives combined. This fills the drives with data. or deallocate all of the drives data.

2. Run a loop with an after trim delay. This loop will:

◦ Trim the first 200GByte area

◦ Sleep for the delay time

◦ Capture and write 200 GBytes into the first 200 GByte area

◦ Trim the second 200GByte area

◦ Sleep for the delay time

◦ Capture and write 200 GBytes into the second 200 GByte area

3. Repeat the loop increasing the delay each time.

The Seagate FireCuda 520 drives proved problematic and seem to have firmware or controller issues
when writing large chunks of data. We observed:

1. If the drives were first filled with data and the above algorithm was run the write performance
went down to a stable 1000 or 2000 MBytes per second and it seemed to be a binary swap
between these speeds. The amount of delay after the deallocate did not seem to make a difference.

2. If the drives were first completely deallocated the performance was generally high.

3. Testing one drive in a Linux system showed that writing more than 100G to a single drive
appeared to show the slow 500/1000 MBytes per second performance.

4. The usage of deallocate did not seem to make much difference while in the processing loop.

5. The drive does not update the “nuse” namespace block usage register.

The Samsung 750 Pro drives behaved much better. We observed:

1. Apart from deallocating the unused space, the deallocate command did not seem to effect
performance much (4369→ 4467 MBytes/s, note includes a larger delay in the tests). We assume
the drive is efficient at erasing the blocks and can do this at a rate close to the write block time.

2. It was noted that if the 200 GBye writes were made directly after each other performance dropped
to around the 3729 MBytes/s level. If a 10 second delay was placed between 200 GByte captures

Dune NVMe Storage Design, Beam Ltd Page: 27 of 28

BEAM
this did not happen. We assume the block erasing process is slightly slower than the block write
process or some other housekeeping tasks are on-going.

3. The drive does update the “nuse” namespace block usage register. It can be seen decrementing
after a deallocate command over a few minutes.

At this point in time we believe that using the Samsung 750 Pro 500 GByte drives seem like the best
option and no deallocate commands will be necessary for normal Dune usage although it would likely be
beneficial to use the NvmeRead engine to trim/deallocate the 200 GByte region after the data has been
read.

It would be good to do a long term capture test to see how the performance degrades with usage and drive
wear.

13. Notes
1. When running at full data rate these device could use around 25 Watt’s of heat, so cooling systems

might need to be implemented. However if run for one 200 GByte sample once per day this
should not be a problem.

Dune NVMe Storage Design, Beam Ltd Page: 28 of 28

	1. Introduction
	2. NvmeStorage core overview
	3. Dune System Overview
	3.1. Dune Raw Data

	4. NvmeStorage core operation
	4.1. NVMe Storage Access

	5. NvmeStorage core interfaces
	5.1. Hardware interface
	5.2. Clocks and reset
	5.3. Axi4-Lite bus interface
	5.4. NVMe write data stream
	5.5. NVMe ToHost Control/Data stream
	5.6. NVMe FromHost Control/Data stream

	6. Control and status registers
	6.1. Control Register
	6.2. Status Register
	6.3. The Error register
	6.4. Read Blocks System
	6.4.1. Read Control Register
	6.4.2. Read Status Register

	7. NvmeStorage Alternate Bus Interface
	8. Communication with the Nvme devices
	9. Using The NvmeStorage Module
	9.1. Constraints
	9.2. Building for other platforms
	9.3. PCIe Gen3 IP Blocks
	9.4. Core Internal Parameters

	10. Testing the NvmeStorage core
	10.1. Building the NvmeStorage test FPGA firmware
	10.2. Building the NvmeStorage test software
	10.3. Running the test system

	11. NVMe Devices
	11.1. NVMe Write Performance
	11.2. NVMe Write latency
	11.3. NVMe Drive Lifetime
	11.4. NVMe Devices Used

	12. Performance Figures
	12.1. Nvme Read Performance Figures
	12.2. Nvme Deallocation Performance

	13. Notes

