
BEAM CERN Trajectory Measurement System

Software Development Manual

Project CERN-TMS

Date 2024-09-26

Reference Cern-tms/TmsSoftwareDevelopment

Version 2.3.0

Author Dr Terry Barnaby

Table of Contents
1. References..1
2. Introduction..1
3. Overview..1
4. Developing on the System Controller..2
5. Developing on external systems...2
6. Controlling the TMS system..2

6.1. Using the setNextCycle call...2
6.2. Control and Diagnostics..5

7. TMS Data Client access...5
7.1. Data Access Latency and Speed..7

8. Compiling the TMS Client Library..8
9. Building the main TMS software...8

9.1. Building the main TMS software..9
9.2. Building the Module controller OS...9
9.3. Building a FPGA Firmware package...9

10. Overview of BOAP RPC Operation...10

1. References
● IT-3384/AB: Technical Specification for a new trajectory measurement system for the CERN Proton

Synchrotron.

● TMS design documents systemDesign, pupeFpgaDesign, pupeBoardDesign.

● TMS Development and Support website at: https://portal.beam.ltd.uk/support/cern/.

2. Introduction
This document provides some additional information to assist in developing client software to access the
TMS system. See the TmsSoftware manual for more details on the overall TMS software and TMS API
documentation.

3. Overview
The TMS system provides a simple, network based, remote procedure call (RPC) mechanism for control
of and data access from the TMS. This RPC is implemented using the BEAM BOAP (Beam Object
Access Protocol). This is a simple and efficient object orientated RPC mechanism suited to this task.

Document: cern-tms/TmsSoftwareDevelopment Page 1 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
https://portal.beam.ltd.uk/support/cern/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

4. Debian 12 Development
In order to build TMS software packages using the TMS API you need the Debian G++ tools installed
and the tms-dev package installed that contains the TMS API libraries. To setup a Debian 12 system you
can install these with:

1. Make sure the “wget” utility is installed: “apt update; apt install wget”

2. Install the PGP security key: “wget https://portal.beam.ltd.uk/dist/cern/tms/debian_12/tms-
repo.asc -O /etc/apt/trusted.gpg.d/tms-repo.asc“

3. Install repository information: “wget https://portal.beam.ltd.uk/dist/cern/tms/debian_12/tms-
repo.list -O /etc/apt/sources.list.d/tms-repo.list”

4. Install TMS development API libraries: “apt update; apt install tms-dev”.

To install the C++ build packages you can run:

1. “apt update; apt install build-essential bison flex qtbase5-dev libfftw3-dev libpci-dev dh-make
lintian”

5. Developing on the System Controller
All of the TMS software is installed in the /usr/tms directory. Included in this directory structure are the
'C++' header files and library binary files for the libTms and libBeam libraries. These are situated in the
/usr/tms/include and /usr/tms/lib directories.

The libBeam library provides basic, low level, objects for developing applications. This includes objects
for string, network and thread handling as well as the core BOAP functionality.

The libTms library provides the TMS API access library together with some helper definitions and
functions for TMS access as well as CycleParameter table generation and management classes.

The libBDebug.a library provides debug utilities including crash backtrace system.

The libadmxrc2.so Alpha Data ADMXRC interface library. Uses the admxrc2 Linux kernel driver to
communicate with the PUPE boards.

There are some example TMS client applications in the /usr/tms/tmsExamples directory.

If the System Controller has had the development system installed then it is possible to build client
applications on the system. Use the examples in the tmsExamples directory as a template for this.

6. Developing on external systems
To develop TMS client software on external systems the libBeam and libTms libraries need to be ported
to the external system. Either just the TMS client library source or the full TMS source code is available
to be installed onto a system to aid this. The TMS API is written in the 'C++' language and is designed to
be built using the GNU compiler tool set.

Document: cern-tms/TmsSoftwareDevelopment Page 2 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
https://portal.beam.ltd.uk/dist/cern/tms/debian_12/tms-repo.list
https://portal.beam.ltd.uk/dist/cern/tms/debian_12/tms-repo.list
https://portal.beam.ltd.uk/dist/cern/tms/debian_12/tms-repo.asc
https://portal.beam.ltd.uk/dist/cern/tms/debian_12/tms-repo.asc
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

7. Controlling the TMS system
The TMS system is controlled through the TmsAPI's TmsControl object. This provides a number of
functions that can be used to configure and control the system. This interface is used for the important
setNextCycle() call as well as diagnostics functions.

Each TmsControl object, that is connected to the the TMS system, operates over a separate TCP/IP
socket interface and has its own processing thread within the TmsServer process. In addition each
TmsControl object is thread safe in that it is locked while a RPC is taking place. This allows easy use in
multi-threaded applications.

There can be multiple TmsServers for separate rings operating. Each of these are allocated a ring number
from 1 to 4. The control objects name, for these servers, has the ring number appended so a client can talk
to one of the rings control processes.

7.1. Using the setNextCycle call

The setNextCycle call sets the cycle number and type for the next processing cycle. It is a crucial
function that supplies the TMS system with information on the next processing cycle. The timing of the
setNextCycle call is crucial to the operation of the system. The call should be made in the period after the
previous cycles CYCLE_START event and at least 10ms before the CYCLE_START signal for the cycle
it refers to. An ideal timing would be on the CYCLE_STOP event for the previous cycle. This gives the
TMS plenty of time to load the FPGA's with the new state/phase tables.

The setNextCycle call is provided with cycle number and cycle type information. The cycle number is a
32bit unsigned incrementing integer and the cycle type an ASCII string. The cycle type string defines the
PUPE state/phase tables to be used for measuring the particle beam that will be present in the machine for
that cycle. The TMS will arrange for the correct State/Phase tables to be loaded before the
CYCLE_START event for the next processing cycle.

A simple example of some code using the setNextCycle call is given in the tmsControlClient2.cpp
example source file. This is printed below:

/***
 * TmsControlClient2.cpp TMS API example code
 * T.Barnaby, BEAM Ltd, 2007-02-07

 *
 * This is a very basic example of using the TmsApi to set the
 * TMS's cycleNumber and cycleType.
 * It is designed to give an overview of using the API.
 */
#include <iostream>
#include <stdio.h>
#include <unistd.h>
#include <TmsD.h>
#include <TmsC.h>

using namespace Tms;
using namespace std;

Document: cern-tms/TmsSoftwareDevelopment Page 3 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

// Loop sening next cycle information
BError tmsControlLoop(TmsControl& tmsControl){

BError err;
UInt32 cn = 0;
BString ct = "Beam3";

while(1){
// Wait for next cycle information
usleep(1200000);

// Set next cycle information
cn = cn + 1;
ct = "Beam3";

// Send the next cycle information to the TMS server
if(err = tmsControl.setNextCycle(cn, ct)){

cerr << "Error: " << err.getString() << "\n";
}

}

return err;
}

int main(int argc, char** argv){
BError err;
TmsControl tmsControl;
BString hostName = "localhost";

// Connect to the Control service
if(err = tmsControl.connectService(BString("//") + hostName + "/tmsControl1")){

cerr << "Error: " << err.getString() << "\n";
return 1;

}

// Set the network priority high
if(err = tmsControl.setPriority(BSocket::PriorityHigh)){

cerr << "Error: " << err.getString() << "\n";
return 1;

}

// Set the TmsServer thread priority high
if(err = tmsControl.setProcessPriority(PriorityHigh)){

cerr << "Error: " << err.getString() << "\n";
return 1;

}

if(err = tmsControlLoop(tmsControl)){

Document: cern-tms/TmsSoftwareDevelopment Page 4 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

cerr << "Error: " << err.getString() << "\n";
return 1;

}

return 0;
}

The TmsControl object is used for communications with the TMS server. This is connected to the TMS
using the connectService() call. The connectService call takes, as an argument, the host name of the TMS
system and name of the BOAP object to connect to which includes the ring number. This is encoded in a
URL like format.

Once the TmsControl object has been successively connected then the system increases the priority of the
Network Connection. On systems that support this, such as Linux, this increases the priority of packets
sent over this TCP/IP link over other network packets passing between the systems. Currently this only
increases the priority at the packet queues in the two communicating systems, but it can set the TCP/IP
TOS QOS bits so that intervening network switches can honour the priority.

The setProcessPriority call is now used to increase the priority of the TMS internal thread handling this
connection. This effectively increases the priority of the setNextCycle handling within the TMS server
over normal data access functions.

Once the TmsControl TCP/IP link has been fully configured the setNextCycle call is called continually at
the appropriate time. We would expect the call to be synchronised to the CERN PS system by means of
current CERN control protocols. It would also be possible to set up the client application to receive events
from the TMS system and to synchronise the call with the CYCLE_STOP event. There is a simple
example, tmsControlClient3.cpp, that performs this.

The setNextCycle function also returns a BError object. This object defines if the function call was
successful or not with an appropriate error number and error string. The possible errors are listed in the
TmsSoftware document. The most likely error is the ErrorCycleNumber - “The Cycle Number and Type
was not updated in-time for this cycle.” This indicates that the setNextCycle function did not complete in
time for the START_CYCLE it referred to.

7.2. Control and Diagnostics

Most of the other TmsControl API functions are concerned with diagnostics and control. It is expected
that these functions would only be used by engineers responsible for control and management of the
system.

8. TMS Data Client access
Most of the TMS activity will centre on the client applications accessing the data acquired by the TMS
system. The system can support any reasonable number of client applications accessing the TMS data
limited by the overall system bandwidth and the actual amount of data read. The system has storage for
around 10GBytes of real-time data which equates to about 3 seconds of data capture. The client
applications can access this data while it is available in the memory of the PUPE processing engines.
There is thus around a 2 second window of opportunity in which to read the data acquired. The TMS is
connected to the client systems by means of a single Gigabit Ethernet interface. The maximum client data

Document: cern-tms/TmsSoftwareDevelopment Page 5 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

rate is about 62 MBytes per second.

Client applications access the TMS data by using the TmsProcess API object. Each TmsProcess object,
that is connected to the the TMS system, operates over a separate TCP/IP socket interface and has its own
processing thread within the TmsServer process. In addition each TmsControl object is thread safe in
that it is locked while a RPC is taking place. This allows easy use in multi-threaded applications.

 An example of a client application reading some data is given in the example code file
tmsDataClient1.cpp. The contents of this file is listed below:

/***
 * TmsDataClient.cpp TMS API example code for a Data Client
 * T.Barnaby, BEAM Ltd, 2007-02-07

 *
 * This is a very basic example of using the TmsApi from a clients perspective.
 * It is designed to give an overview of using the API.
 */
#include <iostream>
#include <stdio.h>
#include <TmsD.h>
#include <TmsC.h>

using namespace Tms;
using namespace std;

// Function to reads some data
BError tmsTest(TmsProcess& tmsProcess){

BError err;
DataInfo dataInfo;
Data data;
UInt32 cn = 0;
BString ct;

// Find out the current cycle number and type
if(err = tmsProcess.getCycleInfo(cn, ct)){

return err.set(1, BString("Error: Getting Cycle Number: ") + err.getString());
}

printf("Getting data for cycles starting at cycle: %u\n", cn);

for(; ; cn++){
// Set data require and wait for data
printf("GetData: Cycle Number: %u\n", cn);
dataInfo.cycleNumber = cn;
dataInfo.channel = 1;
dataInfo.cyclePeriod = CyclePeriodHarmonic0;
dataInfo.startTime = 0;

Document: cern-tms/TmsSoftwareDevelopment Page 6 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

dataInfo.orbitNumber = 0;
dataInfo.bunchNumber = 0;
dataInfo.function = DataFunctionRaw;
dataInfo.argument = 0;
dataInfo.numValues = 1024;
dataInfo.beyondPeriod = 0;

if(err = tmsProcess.getData(dataInfo, data)){
return err.set(1, BString("Error: Getting Data: ") + err.getString());

}
printf("Data: NumValues: %d\n", data.numValues);

}

return err;
}

int main(int argc, char** argv){
BError err;
TmsProcess tmsProcess("//localhost/tmsProcess1");

// Run a normal data gathering cycle as a normal client would.
if(err = tmsTest(tmsProcess)){

cerr << "Error: " << err.getString() << "\n";
return 1;

}

return 0;
}

The TmsProcess object is used for communications with the TMS server. This is connected to the TMS
using the connectService() call. The connectService call takes, as an argument, the host name of the TMS
system and name of the BOAP object to connect to including the ring number. This is encoded in a URL
like format.

Once the TmsProcess object has been successively connected then the client can access the data using the
getData() call. The getData call takes, as an argument, a DataInfo object that defines the data required. In
this simple example the client application first uses the getCycleInfo call to determine the TMS's current
cycle number and then attempts to read as many sets of the same data from the TMS.

The getData call returns the data in the Data object. This primarily consists of an array of 64 bit values
containing the Time, Sigma, DeltaX and DeltaY components.

 The function also returns a BError object. This object defines if the function call was successful or not
with an appropriate error number and error string. The possible errors are listed in the TmsSoftware
document. The most likely errors are listed below:

ErrorCycleNumber The Cycle Number and Type was not updated in-time for this cycle.

Document: cern-tms/TmsSoftwareDevelopment Page 7 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

ErrorDataNotAvailable The required data is not available. This means that there is no data for the
given cycle number and/or period requested.

ErrorDataGone The required data has already been overwritten by new data. This means the
client was too slow in fetching the data of the TMS system was heavily
loaded and could not supply the data before it had gone from the PUPE data
memory.

ErrorDataFuture The required data is to far into the future. This means that the cycle number
requested is too far into the future.

See the TmsSoftware manual for more details.

8.1. Data Access Latency and Speed

When a client fetches data from the TMS system, it has to pass through the various system layers. In the
current system implementation, a set of data cannot be streamed through these layers, it must be copied as
a complete block of data. This results in some latency delays in the system. The latency delays following
a getData call are:

● The TmsPuServer fetches data from a PUPE's memory. The cPCI bus data rate is around
100MBytes/sec.

● The TmsServer fetches the data from the TmsPuServer. The Internal Gigabit Ethernet transfer
speed after overheads is about 62MBytes/sec.

● The clients fetches the data from the TmsServer. The External Gigabit Ethernet transfer speed
after overheads is about 62MBytes/sec.

The actual latency is dependent on the size of data required. Although the amount of latency is not a real
issue in the system, its effect on overall bandwidth could be. However, use can be made of the fact that
the system is a multi-threaded SMP system. This allows multiple clients or single multi-threaded clients
to access the data simultaneously and eliminate the bandwidth issues of latency. The best bandwidth
available would be achieved when all of the Module Controllers are working simultaneously. Thus, for
example, if data is required from all PUPE engines, rather than read from each PUPE channel one after
the other it would be best to read from channels 1, 16 and 31 simultaneously then move to 2,17,32 etc.

9. Compiling the TMS Client Library
The TMS source code is available in the GIT repository at:
https://portal.beam.ltd.uk/support/cern/git/gitlist/tms. The source code has been built and tested on an x86
Debian 12.7 system and test built on a fedora 39 system. It should be portable to other POSIX based
system with minor modifications.

In order to compile the library it first needs to be configured. To configure the TMS source for build first
add and modify a suitable TARGET file in config to suit your requirements. The main parameters to
modify include:

● BUILD_ENV – Defines the build environment. Options are:

Document: cern-tms/TmsSoftwareDevelopment Page 8 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
https://portal.beam.ltd.uk/support/cern/git/gitlist/tms
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

“Undefined” - normal build environment

“CERN” - CERN's internal build environment

● BUILD - Defines which components to build. Options are:

"FULL" - for full TMS system,

"CLIENT" - for client code,

"LIB" - for just development libraries.

● TARGET - Defines the target platform to build for. Current settings include:

"el6" - for Centos6 or Redhat enterpise Linux 6

"lynxos" - for LynxOS.

Once configured the TMS libraries can be built using the commands:

1. make depend

2. make

Note that the “make depend” command may not function in some build environments including the
CERN environment.

Once built the programs/libraries can be installed on a system, if required, using the following command
run as the superuser:

1. make install

There are some example client applications using the TMS API libraries in the tmsExamples directory.

10. Building the main TMS software
The TMS source code is available in the GIT repository at:
https://portal.beam.ltd.uk/support/cern/git/gitlist/tms. The code is designed to be built on a Linux Debian
12.7 system. It consists of 3 main parts: The TMS main code, the Module controller OS and the FPGA
packaging parts. The source tree from the GIT repo can be located in any suitable directory on the system.

The TMS sofware is split into the following Modules:
● tms – The main system software
● tms-mcsys – Module Controller system
● tms-fpga – FPGA firmware
● tms-doc – system documentation

Document: cern-tms/TmsSoftwareDevelopment Page 9 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
https://portal.beam.ltd.uk/support/cern/git/gitlist/tms
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

10.1. Building the main TMS software

The main TMS software consists of the TMS API libraries, the TMS server programs and the TMS client
programs that run on the system controller and module controllers. The code is situated in the tms
directory.

The following instructions describe how to build and package this code:

1. Run “make install-build-packages” to install the build package depenancies.

2. If you update the code then you should first change the version number in the file Config.mk.

3. Run “make” to build all of the libraries and programs.

A manual install of the software can be made by running the command “make install” as root on the
system controller.

To create Debian or RPM packages run the command “make packages”.

There is a “make packages-install” target which installs the packages to /dist/cern/tms” which is a Beam
standard location for our package server.

10.2. Building the Module controller OS

Currently, on Debian 12, the Module controller OS cannot be built. The following is for an older
Fedora build environment.

The module controller's OS module, tms-mcsys, can be build on the TMS server. The kernel and driver
modules of the system being used to build the package are used for the module controller's OS. So this
build should be performed on a system controller.

To build the software:

1. Run “make config” to configure the build.

2. If you update the code then you should first change the version number in the file Makefile.config.

3. Run “make” to build all of the libraries and programs.

To create an RPM package run the command “make rpms”. See the notes above if you wish to build the
RPMS as a normal user.

10.3. Building a FPGA Firmware package

Currently, on Debian 12, the Module controller OS cannot be built. The following is for an older
Fedora build environment.

This section describes how to build an FPGA firmware RPM package. It assumes that a suitable FPGA bit
file has already been created with the Xilinx FPGA tool set. The scripts to do this are in the tms-fpga
directory.

1. Copy bit file to tms-fpga directory with appropriate file name containing the version

Document: cern-tms/TmsSoftwareDevelopment Page 10 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

BEAM CERN Trajectory Measurement System

Software Development Manual

number.
2. Symbolically link this bit file with tms-fpga.bit. (ln -sf tms-fpga-1.2.0.bit tms-fpga.bit)
3. Run “make rpm” to build package. See the notes above if you wish to build the RPMS as a normal

user.
4. Run “make rpmInstall” to install the package in packages

11. Overview of BOAP RPC Operation
The BOAP (Beam Object Access protocol) system implements a simple, binary based, RPC system that
runs across a TCP/IP link.. The system has a client/server architecture. A server will implement a set of
service objects each of which have a number of possible methods (function calls). A client application can
create a connection to these objects and call the method functions as required. An application can have a
number of service objects and call methods on other applications service objects as required. The BOAP
system can work in a single or multi-threaded environment.

The BOAP system employs an object name server that provides an object name to IP Address and socket
lookup facility. When a server creates a new service object, its name, IP Address and socket number is
registered with the BOAP name server. Clients can make use of the BOAP name server to connect to the
required object using a simple ASCII string based name.

To ease the creation of service and client objects that implement the protocol, an interface definition
language (IDL) compiler is provided. The BOAP interface definition language compiler takes a high level
definition of the required objects and API and produces a documented set of service and client objects in
'C++' to implement that protocol. It can also produce other language interfaces to the same protocol.

At a low level the RPC system serialises the method/function call into a little endian binary sequence that
is sent across a TCP/IP connection in an efficient manner. On a big endian system the data is
automatically converted to big endian format. The system implements a set of basic primitive types and
has the ability to implement higher level data structures, lists and multi-dimensional arrays.

Document: cern-tms/TmsSoftwareDevelopment Page 11 of 11
Web: www.beam.ltd.uk,
Email: terry.barnaby@beam.ltd.uk

http://www.beam.ltd.uk/
mailto:terry.barnaby@beam.ltd.uk

	1. References
	2. Introduction
	3. Overview
	4. Debian 12 Development
	5. Developing on the System Controller
	6. Developing on external systems
	7. Controlling the TMS system
	7.1. Using the setNextCycle call
	7.2. Control and Diagnostics

	8. TMS Data Client access
	8.1. Data Access Latency and Speed

	9. Compiling the TMS Client Library
	10. Building the main TMS software
	10.1. Building the main TMS software
	10.2. Building the Module controller OS
	10.3. Building a FPGA Firmware package

	11. Overview of BOAP RPC Operation

