) CERN Trajectory Measurement System
ALPHA DATA

BEAM Software Design
Project CERN-TMS
Date 2006-11-17

Reference Cern-tms/softwareDesign
Version 1.0

Author Dr Terry Barnaby

Table of Contents

1. References 2
2. Introduction 2
3. System Software Overview 2

3.1. Pick-Up Processing Engine (PUPE) 3
3.2. Module Controller (MC) 3

3.3. System Controller (SC) 4
3.4. Client Application’s (CLIENT 4
4, Software Environment and Tools 4
System API’s 5
6. Module Controller API (PuApi) 5
6.1. Pick-Up Control Object (PuControl) 6
6.2. Pick-Up Process Object (PuProcess) 6
6.3. The PuCycleParam Object 8
6.4. The PuStatus Object 9
6.5. The Datalnfo Object 9
6.6. The Data object 10
7. System Controller API (TmsApi) 11
7.1. TMS Control Object (TmsControl) 11
7.2. TMS Process Control Object (TmsProcess) 12
7.3. The Configlnfo Object 13
7.4. The CycleParam Object 13
8. Module Controller Software 14

e

9. System Controller Software 14
10. Software Documentation 15
11. Software Distribution 15

12. Software Updates 16

Document: cern-tms/softwareDesign Page 1 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design

1. References

® [T-3384/AB: Technical Specification for a new trajectory measurement system for the CERN Proton
Synchrotron.

® Alpha Data’s TMS Tender “pre-design-1.5".

® Emailed questions answered by Jeroen Belleman of CERN.

® Visit to CERN on 2006-06-20

® TMS design documents systemDesign, pupeFpgaDesign, pupeBoardDesign.

® TMS Development and Support website at: https://portal.beam.ltd.uk/support/cern/.

2. Introduction

This Software Design document concerns the high level design of the software for the CERN Trajectory
Measurement System (TMS). The main, high speed, data processing work is carried out in FPGA
hardware using specially developed FPGA firmware written in VHDL. The system software’s main
responsibility is to provide control, data access and test functions for the system.

To gain an understanding of the overall systems design please refer to the systemDesign document

3. System Software Overview

The main, high speed, data processing work is carried out in FPGA hardware. The system software’s
main responsibilities are to provide control, data access and test functions for the system.

All of the system software will be based on the Linux operating system. This will provide a reliable and
flexible system that can be easily maintained locally and remotely. All of the software will Open Source
and thus all source code will be available.

All communications with external systems will be through the system controller (SC) which will support
a simple API to control and gather data from the system. The system controller will interrogate the
individual Pick-Up Processing Engines (PUPE) via the local Gigabit Ethernet network and the Module
Controllers (MC). The TMS’s API can be used across the network interface from a remote system or
locally from applications running on the system controller.

The software will be developed on the GNU/Linux operating system using the Open Source GNU tool-
set. The software will be predominantly written in the ‘C++4’ language.

From the software’s perspective there are four main modules in the system, the Pick-Up Processing
Engine (PUPE), the Module Controller (MC), the System Controller (SC) and the Client Application
(CLIENT).

Document: cern-tms/softwareDesign Page 2 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk
file:///src/cern/design/softwareDesign.odt/systemDesign.pdf
https://portal.beam.ltd.uk/support/cern/

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design

PUPE

PUuApi
Module HAP!

PUPE Controller

System
Controller

PupeApi

PUPE TmsApi

Module

Controller Client
FlolHE Application

Hllustration 1: TMS Main System Modules

The TMS has a private network to which the Module Controllers and System Controllers are connected.
The System Controllers have dual Gigabit Ethernet interfaces, one is connected to the TMS’s private
network and the second is connected to the CERN network.

3.1. Pick-Up Processing Engine (PUPE)

The PUPE is the main module in the TMS system. It performs the analogue data capture and real-time
data processing functions of the TMS. The PUPE is based on FPGA technology and is implemented as a
cPCI board installed in a Compact PCI 19inch rack. Each PUPE engine implements 3 pick-up processing
channels each having 3 ADC’s. The PUPE is accessed via the cPCI bus from a cPCI module controller.

The PUPE is booted from the systems Module Controller (MC) using the standard Alpha Data FPGA
boot protocol. Control and data access is implemented using the PUPE API across the cPCI bus. The
PUPE API is defined in the pupeFpgaDesign document.

3.2. Module Controller (MC)

The module controller is a conventional cPCI system controller. It will have an Intel x86 based CPU,
some boot FLASH memory, 1 Gigabyte of RAM, a cPCI bus interface and a Gigabit Ethernet port.

The module controller will boot from the main system controller (SC) over the Ethernet interface and will
run a small Linux based operating system. It will be responsible for booting and managing the 5 PU
processing engines (15 Proton Synchrotron PU’s) on its bus. Communications between the system

Document: cern-tms/softwareDesign Page 3 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.lItd.uk

mailto:terry.barnaby@beam.ltd.uk
file:///src/cern/design/softwareDesign.odt/pupeFpgaDesign.pdf

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design

controller and the individual PU processing engines will also be handled.

The Module Controller implements a simple network based API for control and access to the individual
PUPE channels.

3.3. System Controller (SC)

The system controller will be a standard Intel Xeon based computer system. It is housed in a separate 2U
or 4U 19” rack enclosure. The system controller will have 2 Gigabyte’s of memory and dual disk drives
in a RAID configuration for disk redundancy. These disks will contain all of the TMS’s software, FPGA
firmware and configuration information. The controller will have dual Gigabit Ethernet interfaces, one
connected to the Gigabit switch that communicates with the processing module’s controllers and one
connected to the sites LAN for remote access to the system.

The system controller will not have a monitor, keyboard or mouse. All system configuration and
maintenance will be carried out over the Ethernet network. The system controller will run the Linux
operating system.

Two identical system controllers will be provided for system redundancy.

As well as providing a control and data interface to the Trajectory Measurement System, the software on
the system controller will implement system boot, system configuration, system test and fault diagnostics
functions. This will be made available to operators via a web based interface as well as through a
command line API.

3.4. Client Application’s (CLIENT)

The client applications are CERN’s system control and data gathering applications. These will probably
reside on different systems and communicate with the TMS through the Gigabit Ethernet interface.
However, it will also be possible for CERN to implement these applications on the TMS’s system
controllers if desired. These applications will translate between CERN’s specific control and data access
protocols and the TMS’s internal control and data protocols.

4. Software Environment and Tools

All of the TMS’s software will be developed within the Linux operating system environment and will use
the Linux operating system as its base system layer. The base Linux distribution we will use will probably
be Fedora Core 6, using the 2.6.x Linux kernel. The TMS individual systems, the MC and SC, will only
have a limited installation of this operating system especially the Module Controllers.

The main software development tools will be the GNU tool-set and the development language will be
‘C++. These tools will be installed on the System Controllers but can be used on a separate Fedora Core

Document: cern-tms/softwareDesign Page 4 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.lItd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design

6 system. The SVN version control system will be used for version control.

All software will be supplied in source code as well as binary forms.

5. System API's
There are three main API’s used within the TMS. They are:

® PupeApi: This provides control and data access to the PUPE’s individual, FPGA firmware
implemented, Pick-Up channels. The interface implements a register level interface for control
and a shared memory interface for data access. It will also possibly support a DMA for data
access. It is documented in the “PupeFpgaDesign” document.

® Module Controller API (PuApi): This provides software access to the individual Pick-Up
processing engines. The API implements a simple RPC network API to allow control and data
access to the individual Pick-Up channels. It also implements a system control, configuration and
test API. It is documented in the “Module Controller API” section in this document.

® System Controller API (TmsApi): This provides software access to the whole of the TMS
system. The API implements a simple RPC network API to allow control and data access to the
individual Pick-Up channels. It also implements a system control, configuration and test API. It is
documented in the “System Controller Controller API”” section in this document.

Each individual Pick-Up channel has two number’s associated with it. One is the physical position of the
Pick_Up within a single TMS module. This number is in the range 0-17. The second number is the logical
Pick-Up number within the TMS. This number is in the range 0-999. A configuration mapping table links
the logical Pick-Up number to the physical module number and individual Pick-Up within the module.
This allows boards to be substituted while the system is running by simply moving the input ADC lines
and reconfiguring the logical to physical Pick-Up channel number table.

We are intending to use the Beam BOAP Object based RPC mechanism for the RPC. We have used this
for a number of projects. It provides a simple and efficient object based RPC mechanism with event
capability.

6. Module Controller API (PuApi)

The Module Controller API (PuApi) will be implemented using a simple, object orientated, RPC
mechanism. A number of objects will be created each implementing a portion of the overall API. The
main API objects and their basic functionality are listed below, this API will be developed during the
software development phase of the project. The API has been designed so that the PUPE engines could be
accessed directly through their on-board Gigabit Ethernet interfaces in the future.

The data definition objects have yet to be fully defined as we are awaiting details on the type of data
Document: cern-tms/softwareDesign Page 5 of 16

Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design

requests required so that we can design and implement them in an efficient manner. It is expected that the
Datalnfo object will allow remote pre-processing of the data to be performed using user defined

functions.

6.1. Pick-Up Control Object (PuControl)

This is responsible for overall control of the Module controller and for configuring and getting statistics
from the system.

Function Description

init() Initialises the system including loading all of the PUPE engines
firmware. The call will return an error object indicating success
or an error condition as appropriate.

test(ErrorList& errorList) Performs a basic test of the system returning a list of errors. The
call will return an error object indicating success or an error
condition as appropriate.

getStatus(NameValueList& status) Returns the current status of the system. This information
includes the number of Pick-Up’s present and their individual
status.

getStatistics(NameValueList& stats) Returns a list of the statistic values as name/value pairs. The call
will return an error object indicating success or an error
condition as appropriate.

6.2. Pick-Up Process Object (PuProcess)

This object provides process control on an individual Pick-Up on one of the PUPE’s under the Module
Controllers control. The functions are passed a puChannel number. This is used when accessing the
PuChannels through the MC.

Function Description
cycleStart(int puChannel, Start off a processing cycle. The Pick-Up channel’s physical
PuCycleParam params) number is passed (0 through 17 on a module controller) and

parameters for the processing cycle are passed. The call will
return an error object indicating success or an error condition as

appropriate.

cycleWaitForEnd(int puChannel) Wait for the completion of a processing run. The call will return
an error object indicating success or an error condition as

Document: cern-tms/softwareDesign Page 6 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.lItd.uk

mailto:terry.barnaby@beam.ltd.uk

)ALPHA DATA

BEANM

Function

getStatus(int puChannel, PuStatus&
status)

getData(int puChannel, Datalnfo
datalnfo, Data& data)

setTestMode(int puChannel, Ulnt
signal, Uin32 timingDisableMask)

setTimingSignals(int puChannel,
UlInt32 timingSignals)

captureTestData(int puChannel,
Ulnt32 sampleClock, Ulnt32 delayMs,

Bool triggerAnd, Ulnt32 triggerBits,
void*data)

CERN Trajectory Measurement System
Software Design

Description
appropriate.

Returns the current status of the Pick-Up engine.

This function returns a set of data from the data present in the
Pick-Up processing engine. The function is given a Datalnfo
object describing the data required. The call will return the
required data along with an error object indicating success or an
error condition as appropriate.

The signal source for the digital test output connector. O — None,
1 - FrefDelayed, 2 — PlIFRef, 3 — PlIFRefHarm.

The timingDisableMask bit mask defines which of the timing
inputs should be disabled. If a timing input is disabled it can be
still operated by software command.

This function sets the given timing signals to the values as
defined in the timingSignals bit array.

Captures diagnostics data and returns the data. The sampleClock
parameter defines the capture rate and sample clock source. The
sample clock sources are defined below. The delayMs defines
the time to wait, in milliseconds, after CYCLE_START before
looking for a trigger event. The triggerAnd parameter defines
whether to use an OR(0) or AND(1) function between the
triggerBits. The triggerBits parameter defines the trigger pattern
to start capture.

The actual trigger pattern bits have yet to be defined but they
will include the systems timming signal inputs together with
some important internal signals.

The test data consists of 128bit values. Each 128bit value has the
following format:

[PlIFrequency 24][PllTheta 24][PhaseTableSignals
8][TimingSignals 8][Spare 16][DeltaY 16][DeltaX 16][Sigma
16]

Note the format and contents of this data are subject to change.

Document: cern-tms/softwareDesign Page 7 of 16

Web: www.alpha-data.com

Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
ALPHA DATA

BEAM Software Design

Sample Clock Parameter

Bits15:8 Sample Clock Frequency
0 ADC CLK 125MHz

1 ADC CLK /2 62.5MHz

2 ADC CLK /5 25MHz

3 ADC CLK /10 12.5MHz

4 ADC CLK /20 6.25MHz

5 ADC CLK /50 2.5MHz

6 ADC CLK /100 1.25MHz

7 ADC CLK /200 625kHz

8 ADC CLK /500 250kHz

9 ADC CLK /1000 125kHz

10 ADC CLK /2000 62.5kHz

11 ADC CLK /5000 25kHz

12 ADC CLK /10000 12.5kHz

13 ADC CLK /20000 6.25kHz

14 ADC CLK /50000 2.5kHz

15 ADC CLK /100000 1.25kHz

16 SYSTEM_CLOCK 10MHz

17 C-CLOCK 1kHz

18 F_REF 200-500kHz
19 F_REF_DELAYED 200-500kHz

6.3. The PuCycleParam Object

The PuCycleParam object contains information on the next processing cycle. It has the following values:

Document: cern-tms/softwareDesign Page 8 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.lItd.uk

mailto:terry.barnaby@beam.ltd.uk

)ALPHA DATA

CERN Trajectory Measurement System

BEAM Software Design
Parameter Description
UlInt32 cycleNumber The Cycle number.
Ulnt32 cycleType The type of cycle
Ulnt32 frefPhaseDelay The phase delay parameter for the Fref timing signal. This is set

Ulnt32 pllInitialFrequency

UlInt32 pllInitialFrequencyDelay

UlInt32 pllGain

Ulnt32 plIDdsMinimum
Ulnt32 plIDdsMaximum
Ulnt32 stateTable[16]
UlInt8 phaseTable[16][512]

based on the position of the Pick-Up in the PS ring.

This defines the initial PLL’s frequency. This is loaded on
START_CYCLE and after the delay given in
pllInitialFrequencyDelay.

This defines the delay in milliseconds from START_CYCLE
when the pllInitialFrequency is loaded.

The gain of the PLL feedback system

PLL DDS minimum frequency

PLL DDS maximum frequency

The array of State Table entries for the processing run

The array of Phase Table entries for the processing run

Ulnt32 numBunches[16]

6.4. The PuStatus Object

The number of bunches captured, per orbit, within the given
phase table period

The PuStatus object returns status information on the Pick-Up processing engine. It has the following

values:

Parameter

Bool running

Description

The Pick-Up is currently running.

Error error

6.5. The Datalnfo Object

The Pick-Up’s current error status.

The Datalnfo object defines the data to be returned from the Pick-Up processing engine. This is just an
idea at the moment. A set of data values can be captured. There are two ways of defining the period for
data collection, one is to collect the data gievn a time in milliseconds and an orbit number the other is

from a given processing cycles period. The cycle periods are those periods defined by the systems timing
signals. These are: 1 — CalibrationPeriod, 2 - HarmonicOPeriod, 3 — Harmonic1Period, 4 —

Document:

cern-tms/softwareDesign

Page 9 of 16

Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

)ALPHA DATA

CERN Trajectory Measurement System

BEAM Software Design

Harmonic2Period ...

The requests asks for a certain number of data values to be returned. If a harmonic change occurs before

this number of values is reached a smaller number of data values will actually be returned.

It has the following parameters:

Parameter

Ulnt32 cycleNumber
UlInt32 channel

Ulnt32 cyclePeriod

Ulnt32 startTime
Ulnt32 orbitNumber

UlInt32 bunchNumber

UlInt32 function

Description
The Cycle number.

The Pick-Up channel number. Logical or Physical depending on
API layer.

This defines what type of data to return. 0 — Use the startTime
and orbitNumber defined in the following fields, 1 —
CalibrationPeriod, 2 - HarmonicOPeriod, 3 — Harmonic1Period,
4 — Harmonic2Period ...

The start time in milliseconds

The Orbit number defining the starting time for the data past the
startTime. (Do we need time in ms as well 7?)

The Bunch number for which to return data. (Could be a bunch
mask ?)

The data function to use. (0 — Raw Sigma/DeltaX/DeltaY, 1 —
Lowpass Filtered data (1 sample per ms) Sigma/DeltaX/DeltaY,
2 — UserFunction)

Ulnt32 argument

Ulnt32 numValues

Argument for data function. Unused in current system. Could be
used for filter parameters etc.

The total number of values to return

6.6. The Data object

The Data object describes the data returned from the Pick-Up processing engine. This is just an idea at the

moment. It has the following parameters:

Parameter

Description

Ulnt32 numValues

The total number of values

UlInt32 dataType The type of data in the data block. O -
[Spare,DeltaY ,DeltaX,Sigma]
Document: cern-tms/softwareDesign Page 10 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design
Parameter Description
DataValue data]] Array of data values (DataValue has the elements:

[Spare,DeltaY ,DeltaX,Sigma])

7. System Controller APl (TmsApi)

The System Controller API (TmsApi) will be implemented using a simple, object orientated, RPC
mechanism. A number of objects will be created each implementing a portion of the overall API. The
main API objects and their basic functionality is listed below, this API will be developed during the
software development phase of the project.

The data definition objects have yet to be fully defined as we are awaiting details on the type of data
requests required so that we can design and implement them in an efficient manner. It is expected that the
Datalnfo object will allow remote pre-processing of the data to be performed using user defined
functions.

7.1. TMS Control Object (TmsControl)

This is responsible for overall control of the TMS and for configuring and getting statistics from the

system.
Function Description

init() Initialises the system including resetting all of the PUPE engines
firmware. The call will return an error object indicating success
or an error condition as appropriate.

configure(Configlnfo configlnfo) Configure the system for use. This includes mapping the
individual physical Pick-Up channels to logical pick-up
channels.

test(StrList& errorList) Performs a basic test of the system returning a list of errors. The
call will return an error object indicating success or an error
condition as appropriate.

getStatus(NameValueList& status) Returns the current status of the system. This information

includes the number of Pick-Up’s present and their individual
status.

getStatistics(NameValueList& stats) Returns a list of the statistic values as name/value pairs. The call
will return an error object indicating success or an error
condition as appropriate.

Document: cern-tms/softwareDesign Page 11 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.lItd.uk

mailto:terry.barnaby@beam.ltd.uk

-)ALPHA DATA

BEANM

Function

getPuProcess(int puChannel,
PuProcess& puProcess, int&
puPhysChannel);

errorEvent(Error errorEvent)

CERN Trajectory Measurement System
Software Design

Description

Returns a reference to the Pick Up channels PuProcess object for
the given logically numbered Pick-Up. This can be used so that
the individual Pick-Ups test functions can be accessed etc.

This event function gets called on a system error. The
errorEvent object contains and error number and string
describing the error. The getStatus() call can be used to fetch
further information.

7.2. TMS Process Control Object (TmsProcess)

This object controls the TMS cycle processing and data gathering functions.

Function

setControlInfo(CycleParam params)

setNextCycleNumber(UInt32
cycleNumber)

requestData(Datalnfo datalnfo)

getData(Datalnfo datalnfo, Data&
data)

Description

Sets the control information for the cycle number given and
subsequent cycles. The parameters for the processing cycle are
passed, this includes the Phase and State table information. The
call will return an error object indicating success or an error
condition as appropriate.

Sets the cycle number for the next processing cycle. The call
will return an error object indicating success or an error
condition as appropriate. This should be called at least 100ms
before the next CYCLE_START event.

This adds a request for some data. The Datalnfo object defines
the data required. This request can be made at any time. If the
data is present in cache the data will be available immediately, if
not the system will await the data from a subsequent processing
cycle. When the data is available a “data” event will be sent to
the client. Not that it is not necessary to use requestData. The
client can call getData() directly although this call will block
until the data is actually ready.

This function returns a set of data from the data present in the
data cache or directly from the Pick-Up processing engines. The
Datalnfo object describes the data required. The call will return
the required data along with an error object indicating success or
an error condition as appropriate. The call will block until data

Document: cern-tms/softwareDesign Page 12 of 16

Web: www.alpha-data.com

Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

-)ALPHA DATA
BEAM

Function

dataEvent(Datalnfo datalnfo)

7.3. The Configinfo Object

CERN Trajectory Measurement System
Software Design

Description
is ready.

This event function gets called when some requested data
becomes available. The Datalnfo object contains information on
the data. The getData() call can be used to fetch the actual data.

This object is used to define the configuration of the system.

Parameter

PuReference puReferences[256]

7.4. The CycleParam Object

Description

The logical to physical Pick-Up table. Each PuReference
includes a Module Controller identifier (Possibly IP address)
and a Physical Pick-Up number.

The CycleParam object contains information on the next processing cycle. It has the following values:

Parameter
Ulnt32 cycleNumber
Ulnt32 frefPhaseDelay[128]

Ulnt32 pllInitialFrequency

Ulnt32 pllInitialFrequencyDelay

Description
The Cycle number.

The phase delay parameters for the Fref timing signal for each
of the Pick-Up channels. This is set based on the position of the
Pick-Up’s in the PS ring.

This defines the initial PLL’s frequency. This is loaded on
START_CYCLE and after the delay given in
pllInitialFrequencyDelay.

This defines the delay in milliseconds from START_CYCLE
when the pllInitialFrequency is loaded.

Ulnt32 pllGain The gain of the PLL feedback system

Ulnt32 pllDdsMinimum PLL DDS minimum frequency

Ulnt32 plIDdsMaximum PLL DDS maximum frequency

Ulnt32 stateTable[16]; The array of state table entries for the processing run

UlInt8 phaseTable[16][512]

The array of phase table entries for the processing run

Document: cern-tms/softwareDesign Page 13 of 16

Web: www.alpha-data.com

Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design
Parameter Description
Uint32 numBunches[16] The number of bunches captured, per orbit, within the given
phase table period

8. Module Controller Software

The Module Controller’s will boot and get all of their configuration information from the System
Controller. They will use the industry standard DHCP, TFTP, NES and NTP protocols to achieve this.
The system will boot the Linux 2.6.x kernel and run using a minimal Linux system based on the busybox
application. They will use an initial RAM disk for the root file system during boot and then use an NFS
supplied file system mounted from the System Controller.

As well as the busybox system application the system will run the tmsPuControl application. The
tmsPuControl application implements the TmsPuApi for each of the Pick-Up engines under its control

and is run as a “real-time” process.

The tmsPuControl applications is responsible for booting and managing the individual PUPE’s and will

communicate with them using the PupeApi.

9. System Controller Software

The System Controller will boot from its internal hard disks. It will run a reduced version of Linux
Fedora Core 6. It will provide the following standard networking services to the Module Controllers:

® DHCP Server: For local network configuration.

® TFTP Server: For booting the Module Controllers kernel and initial RAM disk.
® NFS Server: Provides file system for Module Controllers.

® NTP Server: Provides date and time functions for the Module Controllers.

The system will support the IPMI serial over LAN control interface for managing low level BIOS access.
However, the server will also have a VGA monitor port and keyboard port that can also be used for low
level BIOS access. Either of these methods can be used if a complete, “bare metal”, software installation
is required.

The system will run a number of standard system processes and the tmsControl process. The
tmsControl process will run as a “real-time” process and be responsible for implementing the TMS
System Controller API (tmsApi). The tmsControl process will also implement a simple HTTP web-

server interface to allow the current status and configuration of the system to be viewed in a conventional
web-browser.

Document: cern-tms/softwareDesign Page 14 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.lItd.uk

mailto:terry.barnaby@beam.ltd.uk
http://www.busybox.net/

) CERN Trajectory Measurement System
@ ¢ ALPHA DATA

BEAM Software Design

Cycle
Control

TmsApi

Control

PUuApi —

Data HTTP

" Gathering Data cache Api

Hllustration 2: TmsControl Block Diagram
The TmsControl application implements the main system control and data gathering functionality. It
implements the TmsApi which client applications use to control the system.

10. Software Documentation

The software will be documented at a high level in conventional PDF format documentation files. The
lower levels of the code will use the DOxygen tool to create class and function level documentation.

11. Software Distribution

The complete software and documentation for the TMS system will be available on DVD and on the
Alpha Data/Beam CERN support web site. This will include a full installation package together with
individual packages in RPM format. Complete source code will also be made available in raw form and

through the SVN version control system.

Document: cern-tms/softwareDesign Page 15 of 16
Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

) CERN Trajectory Measurement System
ALPHA DATA
BEAM Software Design

12. Software Updates

All of the software will be installed on the System Controllers and will be packaged as RPM packages.
This will enable easy and controlled software updates to the system. It will be possible to update the
second, spare System Controller and test the system while the primary System Controller is in use. It will

then be possible to restart the system using the second, spare controller as the master controller.

Document: cern-tms/softwareDesign Page 16 of 16

Web: www.alpha-data.com
Email: terry.barnaby @beam.ltd.uk

mailto:terry.barnaby@beam.ltd.uk

	1.References
	2.Introduction
	3.System Software Overview
	3.1.Pick-Up Processing Engine (PUPE)
	3.2.Module Controller (MC)
	3.3.System Controller (SC)
	3.4.Client Application’s (CLIENT)

	4.Software Environment and Tools
	5.System API’s
	6.Module Controller API (PuApi)
	6.1.Pick-Up Control Object (PuControl)
	6.2.Pick-Up Process Object (PuProcess)
	6.3.The PuCycleParam Object
	6.4.The PuStatus Object
	6.5.The DataInfo Object
	6.6.The Data object

	7.System Controller API (TmsApi)
	7.1.TMS Control Object (TmsControl)
	7.2.TMS Process Control Object (TmsProcess)
	7.3.The ConfigInfo Object
	7.4.The CycleParam Object

	8.Module Controller Software
	9.System Controller Software
	10.Software Documentation
	11.Software Distribution
	12.Software Updates

