
2007-11-05 TMS Training - Beam Ltd 1

TMS - Training

General Overview of the TMS system

TMS hardware

TMS Software

Cycle Parameters (State/Phase tables)

FPGA Firmware packaging

Testing

Troubleshooting

2007-11-05 TMS Training - Beam Ltd 2

TMS - Introduction
Particle trajectory measurement system for the CERN Proton

Synchrotron

40 Pick-up Channels - 120 analogue channels sampled at
125MHz, 14 bits

FPGA based system processes this data in real-time

Captures and processes about 15 billion samples per second

Network Data access at approx 65 MBytes per second

256 MBytes of memory per pick-up channel

Gigabit Ethernet interface used internally and externally

Modular and scalable system

Software open source Linux based

FPGA firmware written in VHDL

2007-11-05 TMS Training - Beam Ltd 3

TMS Overview

13 Digital
I/O lines

FPGA Data Processing
Engine

Virtex-4 based

Module controller
1 per processing

module
Boots from System

Controller

P
C

I B
u
s

T
im

in
g
 B

u
s

System Controller
2 units (1 spare)
Intel Xeon based

with RAID disk storage

E
th

e
rn

e
t G

ig
a
b
it S

w
itch

Digital Timing and
Test Inputs/Outputs

Analogue Inputs

Clock input

LAN

Processing Module

9 x ADC
front end

(9 Analogue
and 1 clock

inputs)

PU Processing Engine: 5 per module

2007-11-05 TMS Training - Beam Ltd 4

External signals
Name Number Description

ADC Input 120 + 33
spare

Analogue signal inputs. 2 Volts peak to peak into 50 ohms.
Sampled at 125 MS/sec at 14 bits.

10 MHz system clock 17 + 3
for
spares

Master system clock. The ADC’s 125 Mhz sampling clock is
optionally synchronised to this clock and all of the digital
timing signals, except the Injection signal, will re-synchronised
to this clock within each FPGA. Positive TTL into 50ohms.

FREF Input 4 Reference frequency. Positive TTL into 50ohms. (437KHz)

CYCLE_START Input 4 Start of a machine cycle. Positive TTL into 50ohms.

CYCLE_STOP Input 4 End of Last Flat Top, effectively end of cycle. Positive TTL into
50ohms.

CAL_START Input 4 Start of calibration period. Positive TTL into 50ohms.

CAL_STOP Input 4 End of calibration period. Positive TTL into 50ohms.

INJECTION Input 4 Injection. Positive TTL into 50ohms.

HCHANGE Input 4 Harmonic changes. Positive TTL into 50ohms.

Spare Inputs 4 * 3 Spare digital inputs. Positive TTL into 50ohms.

Outputs 17 * 3 Digital outputs

setNextCycle() 1 Information on the next cycle is sent in this call

2007-11-05 TMS Training - Beam Ltd 5

TMS – Hardware

P
U

 P
ro

ce
sso

r

M
o
d

u
le

 C
o
n

tro
lle

r

P
U

 P
ro

ce
sso

r

P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r

M
o
d

u
le

 C
o
n

tro
lle

r

P
U

 P
ro

ce
sso

r

P
U

 P
ro

ce
sso

r

P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r

D
ig

ita
l In

p
u

t P
a

n
e
l

D
ig

ita
l In

p
u

t P
a

n
e
l

Network Switch (2U)

System Controller (4U)

System Controller (4U)

P
U

 P
ro

ce
sso

r

M
o
d

u
le

 C
o
n

tro
lle

r

P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r

M
o
d

u
le

 C
o
n

tro
lle

r

P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r
P
U

 P
ro

ce
sso

r

D
ig

ita
l In

p
u

t P
a

n
e
l

D
ig

ita
l In

p
u

t P
a

n
e
l

2007-11-05 TMS Training - Beam Ltd 6

TMS – Hardware Installed in Rack
TMS System in rack at CERN

System Controller is black unit above racks.

Network switch is installed behind rack.

Only a few timing and analogue connection have been made.

2007-11-05 TMS Training - Beam Ltd 7

TMS - Hardware
System Controller – Dual Intel Xeon PC architecture system with 2

GBytes of RAM, dual Gigabit Ethernet ports and dual SATA
disks in a RAID1 configuration. Boots from hard disk system.
Has spare PCI slots for post processing modules or extra
network ports.

Module Controller – Intel Duo Core based cPCI controller with
1GByte of RAM and 3 Gigabit Ethernet ports. Boots over
Ethernet from System controller. Has PMC slots for extra post
processing modules.

PUPE Boards – Xilinx Virtex-4 FX100 based, 1GByte of SDRAM,
2 Gigabit Ethernet ports, 9 x 14bit ADC's, 13 Digital I/O lines, 1
Digital clock input.

Rack systems – Power supply for cPCI systems. 4 separate 8 slot
card frames, 1 card frame as a spare.

2007-11-05 TMS Training - Beam Ltd 8

Hardware Installation and Setup
System Controller – No special set-up, BIOS at defaults. One

Ethernet port to LAN and the other to the TMS private network
switch.

Module Controller – Some BIOS changes, can be set-up using
VGA monitor and keyboard plugged into the special breakout
lead. Install in far right slots in cPCI rack with transition module
at the rear. Network interface Eth2 to TMS switch.

PUPE Boards – Installed in the slots leaving a spare slot next to
the power supply and a free slot next to the Module Controller
to reduce ADC noise. The Master PUPE should in the far right
slot. This has the extra digital timing panel installed. The timing
bus cable should connect all of the PUPE's together and the
PUPE farthest away from the Master PUPE should have the
timing bus termination jumper installed.

TmsMaintenance manual gives full details.

2007-11-05 TMS Training - Beam Ltd 9

PUPE Board

2007-11-05 TMS Training - Beam Ltd 10

Hardware Maintenance
Change hard disks – one every three years. The disk system runs

as a RAID 1 system, so one disk can be swapped without
having to re-install the software.

Change real-time clock batteries – once every 5 years. The
System Controller and Module controllers have these.

Clean the airflow paths – once every 3 years.

Replace the cooling fans in the rack once every 5 years.

Replace the cooling fans in the System Controller every 5 years.

The System controllers and PUPE boards have on-board thermal
monitoring. This can be used to check that the fans are working
correctly.

2007-11-05 TMS Training - Beam Ltd 11

Hardware Trouble shooting
System Controller – Spare controller can be used. The IPMI

interface can be used to diagnose boot problems or a VGA
Monitor and keyboard can be attached. Normal PC architecture

Module Controllers – Spare controller can be used. VGA Monitor
and keyboard can be attached via breakout lead to diagnose
boot problems.

PUPE Boards – Spare PUPE boards can be used. The TMS
system performs basic PUPE board tests and gives status
information on the power supply voltages and temperature

PUPE boards are identified by module and slot position. A spare
PUPE in the spare rack can be used to replace a faulty PUPE
without a power cycle.

Power Supply's – These will show a red light if there is a problem.
There is a spare power supply in the system.

2007-11-05 TMS Training - Beam Ltd 12

TMS - Software
Operating System is Linux, based on Fedora Core 6 distribution.

Module controller has a very small, network boot Linux system
based on the Busybox utility.

TMS software is predominantly written in 'C++' in an object
orientated style.

TMS software is multi-threaded.

The GNU software development tool-set is used for development.

The TMS Server has the complete development environment
installed.

Two main programs: TmsServer and TmsPuServer.

2007-11-05 TMS Training - Beam Ltd 13

TMS Software Structure

PUPE

Module
Controller

tmsPuServer

System
Controller
tmsServer

Module
Controller

tmsPuServer

PUPE

PUPE

PUPE
Client

Application

TmsPuApi

TmsApi

PupeApi

2007-11-05 TMS Training - Beam Ltd 14

File structure
Most of the TMS software is installed in /usr/tms this has the following directories:

bin Executable programs
include 'C++' include files for development
lib Libraries for development
config Configuration utilities and template configuration files
fpga FPGA firmware
stateTables The Cycle Parameter tables
rootfs The master root file system for the module controllers.
rootfs-[1234] Copies of the master root file system for the individual module

controllers. These are mounted as the root file system for the module
controllers.

tmsExamples Development example code
data Data files such as test signals
html HTML root for the TmsWeb program
tftpboot The module controllers boot files master. These are copied into

/tftpboot/tms-mcsys
doc Documentation on the system.

2007-11-05 TMS Training - Beam Ltd 15

Software Configuration
The System Controllers Linux configuration is standard. Limited

package installation. tmsSetup sets-up default Network config.

The supplied install DVD has a Kickstart file to install and
configure a system from bare metal. Only the network
information and Cycle Parameter information needs to be
configured.

Users can be added to the system if required.

The TMS software is configured with 5 main files.

/etc/tmsServer.conf – This configures the master TmsServer
program.

/usr/tms/rootfs-[1234]/etc/tmsPuServer.conf – These configure the
individual TmsPuServer programs running on the module
controllers.

The Cycle parameters data is in /usr/tms/stateTables

2007-11-05 TMS Training - Beam Ltd 16

TmsServer.conf
Parameter Default Description

TmsServer: tmssc.tmsnet The BOAP Servers host name. Normally the System
Controllers host name on the TmsNet.

SptDir: /usr/tms/stateTables The directory where there State/Phase table library is stored.

SimulateData: 0 If set to 1, the TmsServer will simulate data capture internally.
This is useful for debug whith using any TmsPuServer servers
and thus any PUPE engine boards.

SimulateNextCycle: 0 If set to 1 the TmsServer will call the setNextCycle() call on
each CYCLE_STOP event.

DefaultCycleType: Beam3 This is the type of cycle that will be set on start-up. It defines
which State/Phase tables will be loaded initially.

AdcSysclkSync: 0 Sets the ADC clock to be synchronised with the SYSCLK
timing clock

PuServer1: 1 The is the number of the first TmsPuServer

PuServer2: 2 The is the number of the second TmsPuServer

PuServer3: 3 The is the number of the third TmsPuServer

PuServer4: 4 The is the number of the forth TmsPuServer

PickUp*: 1,1,1 This is the logical to physical pick-up table configuration. It is
overwritten on configure() API calls. The values are:
ModuleNum, PupeNum and PupeChan.

2007-11-05 TMS Training - Beam Ltd 17

TmsPuServer.conf
Parameter Default Description

TmsServer: tmssc.tmsnet The BOAP Servers host name. Normally the System
Controllers host name on the TmsNet.

ModuleControllerNumber: 1 The number of the Module Controller

SimulateFpga: 0 If set to 1, the TmsPuServer will simulate the PUPE FPGA
boards internally. This is useful for debug without using any
PUPE engine boards.

SimulateTiming: 0x00 Simulate Timing signals in software. Bit mask (0xFF all timing
signals)

FpgaFirmwareFile: /usr/tms/fpga/tms-
fpga.bit

This is the path name for the FPGA bit file to use for the PUPE
boards.

FpgaLclk 50 The is the PUPE LCLK frequency to use

FpgaMclk: 125 The is the PUPE MCLK frequency to use

PupeNumber: 5 Defines the number of PUPE boards

PupeMaster: 5 Defines the PUPE board that has the master timing inputs

PupePhysicalOn: 1 Use physical slot locations

PupePhysicalDevices: 10,11,12,13,14 The list of PCI device numbers

2007-11-05 TMS Training - Beam Ltd 18

Module Controller Setup
The Module controller boots from the System Controller.

The kernel is loaded from /tftpboot/tms-mcsys using TFTP

The root file system is in: /usr/tms/rootfs-[1234]

There is a utility named “tmsSetupModuleController”. This will
copy the template /usr/tms/rootfs into the appropriate root file
system directory and optionally add the Ethernet MAC address
to the System Controllers /etc/dhcpd.conf file.

It takes the module controller number as the first argument and
optionally the Ethernet MAC address as the second argument.

Note that a default tmsPuServer.conf file will be installed from
/usr/tms/rootfs. This will probably need editing, especially for
Module Controller 3 and 4.

2007-11-05 TMS Training - Beam Ltd 19

Module Controllers System
Fetches network information using DHCP from system controller.

Fetches the Linux kernel and initial RAM disk root file system
using TFTP from system controller's /tftpboot/tms-mcsys.

Mounts the /usr/tms/rootfs[1234] file system read only using NFS
from system controller.

Mounts local RAM file systems on /tmp and other appropriate
places. Startup file /etc/init.d/rcS

Mounts the /usr/tms directory read only using NFS from system
controller.

Mounts the /data directory read/write using NFS from system
controller.

Busybox is used to implement most of the system programs and
files as well as some shared libraries from a Fedora Core 6
system.

2007-11-05 TMS Training - Beam Ltd 20

Software maintenance
The Linux system needs no normal system maintenance.

The TMS configuration files and Cycle Parameter files need to be
backed up. The TMS script program “tmsBackup” will create a
simple tar archive of the TMS configuration and Cycle
Parameter files.

Any additional files added to the system, such as user's home
directories need to be backed up.

All software is packaged as RPM packages, including the TMS
software. This allows the “yum” and “rpm” tools to manage
updating individual software packages.

System log messages in /var/log/messages.

2007-11-05 TMS Training - Beam Ltd 21

TMS Software Interfacing
The TMS system implements a TCP/IP socket based RPC

interface for control and data access.

The RPC system is based on the BEAM BOAP object access
system. This implements an efficient binary communications
system for performance.

A 'C++' API library, libTms, is provided that can be ported to
different systems.

Two separate object interfaces: TmsControl and TmsService.

Multiple clients can access the system simultaneously.

Also implements an asynchronous event system.

2007-11-05 TMS Training - Beam Ltd 22

Data Client applications using the TMS API
The TmsService object provides a few simple RPC functions.

Provides information functions for a given cycle type or an
individual cycle number.

Returns data from the system.

Supports raw pick-up data (integrated per bunch).

Supports averaged pick-up data (integrated per ms)

Performance is around 65 MBytes/second across a Gigabit
network interface.

Data comes from the PUPE memory. This is sufficient for 2 to 3
PS cycles worth of data.

Data bandwidth restricts the amount of data that can be returned
to the user.

The main function call is: getData(DataInfo info, Data& data)

2007-11-05 TMS Training - Beam Ltd 23

TMS GetData call
Field Description

cycleNumber The PS Cycle number to fetch data from.

channel The pick-up channel number.

cyclePeriod The cycle period the data to fetch data from.

startTime The start time in milli-seconds from the start of the required Cycle Period.

orbitNumber The starting orbit number (starting from 0).

bunchNumber The bunch number (starting from 1 (0 is all bunches)).

function The data processing function to perform or performed.

argument The Argument to the data processing function.

numValues The total number of data points to return.

Function Description

DataFunctionRaw The raw Sigma,DeltaX,DeltaY integrated data

DataFunctionMean The mean Sigma, DeltaX, DeltaY integrated data over 1Ms sample periods. The mean
values are available for all bunches on all channels.

DataFunctionMeanAll The overal mean Sigma, DeltaX, DeltaY integrated data over 1Ms sample periods for all
bunchens. The mean values are available for all channels.

DataFunctionMean0 The mean Sigma,DeltaX,DeltaY integrated data. 1Ms sample period for all bunches
although this is programmable. This function is depreciated in favour of the new
DataFunctionMeanAll function.

DataFunctionMean1 The mean Sigma,DeltaX,DeltaY integrated data. 1Ms sample period for bunch 1

2007-11-05 TMS Training - Beam Ltd 24

TMS GetCycleInformation call
getCycleInformation (UInt32 cycleNumber, CycleInformation &cycleInformation)

CycleInformation
cycleNumber The PS Cycle number
cycleType The Cycle Type Name
BList< CycleInformationPeriod > The list of cycle periods

CycleInformationPeriod
cyclePeriod The Cycle Period
startTime The start time in ms
endTime The end time in ms
harmonic Machines harmonic number
numBunches The number of bunches
bunchMask Bitmask defining which buckets the bunches are captured from. Bit 0 is

bucket 1, bit 1 is bucket 2 etc
numValues The total number of raw data values available

2007-11-05 TMS Training - Beam Ltd 25

TMS GetCycleTypeInformation call
getCycleTypeInformation (BString cycleType, CycleTypeInformation &cycleTypeInformation)

CycleTypeInformation
cycleType The Cycle Type Name
info Information string on this cycle type
BList<CycleTypeInformationPeriod> The list of cycle periods

CycleTypeInformationPeriod
cyclePeriod The Cycle Period
harmonic Machines harmonic number
numBunches The number of bunches
bunchMask Bitmask defining which buckets the bunches are captured from. Bit 0 is

bucket 1, bit 1 is bucket 2 etc

2007-11-05 TMS Training - Beam Ltd 26

Control client applications using the TMS
API

SetNextCycle call needed to provide the TMS system with
information on the next PS cycle. Needs to be called at least
30ms before the START_CYCLE event. Best time at
CYCLE_STOP

Cycle Parameter table management

Diagnostics

System Testing

System Status

System Statistics

2007-11-05 TMS Training - Beam Ltd 27

TMS Software Time Line
Event Description

CYCLE_STOP Master PUPE generates an interrupt.
TmsPuServer loads the next set of CycleParameters if they are available

setNextCycle() The CERN software will send the next cycle number and type information to the TmsServer
program. This could occur any-time from CYCLE_Start to within 30ms of the
CYCLE_START it refers to.
The TmsServer programs sends the setNextCycle information to each of the TmsPuServers.
The TmsPuServer programs load the CycleParameters into each PUPE.

CYCLE_START All PUPE's start processing the cycle.
ErrorEvent If the PUPE detects an error it will issue an error interrupt and will abort processing the cycle.

The tmsPuServer program responds to the error by sending an Error event to the TmsServer
program.
The TmsServer program will send the error event to all clients that have registers an Error
interface object and will store the error message with the cycles state information. This will
be returned in any getData() requests.

CAL_START,
INJECTION,
H_CHANGE

The PUPE's respond to these events as required.

CYCLE_STOP Master PUPE generates an interrupt.
TmsPuServer loads the next set of CycleParameters if they are available
The master TmsPuServer sends the cycleStop event to the TmsServer which wakes up and
client threads awaiting data for the cycle.

2007-11-05 TMS Training - Beam Ltd 28

TMS Software Structure

PUPE

Module
Controller

tmsPuServer

System
Controller
tmsServer

Module
Controller

tmsPuServer

PUPE

PUPE

PUPE
Client

Application

TmsPuApi

TmsApi

PupeApi

2007-11-05 TMS Training - Beam Ltd 29

TMS Errors
Error Description

ErrorOk No Error. This is the status returned when the command completed with no errors.

ErrorMisc A miscellaneous unclassified error occurred.

ErrorWarning A warning message. No actual error occurred.

ErrorInit An error occurred during initialisation of the system.

ErrorConfig There is an error in the system configuration files.

ErrorParam There was an error in one of the parameters passing in an API call.

ErrorNotImplemented This function has not been implemented.

ErrorComms A communication error occurred.

ErrorCommsTimeout A communications time out occurred.

ErrorMC A Module Controller has an error

ErrorFpga There is an error with a PUPE FPGA board.

ErrorStateTable An error event occurred due to an incorrect FPGA State table transition.

ErrorCycleNumber The Cycle Number and Type was not updated in-time for this cycle.

ErrorDataNotAvailable The required data is not available. This means that there is no data for the given cycle
number and/or period requested.

ErrorDataGone The required data has already been overwritten by new data. This means the client was
too slow in fetching the data of the TMS system was heavily loaded and could not supply
the data before it had gone from the PUPE data memory.

ErrorDataFuture The required data is to far into the future. This means that the cycle number requested is
too far into the future.

2007-11-05 TMS Training - Beam Ltd 30

TMS Web Access
The TMS Server presents a simple web access system

Able to view system status

Able to view statistics

Able to get data from the system

Able to display simple graphs.

Could be easily extended.

2007-11-05 TMS Training - Beam Ltd 31

TMS User Programs
tmsControl: Command line control application.

tmsControlGui: GUI Command line application

tmsTestData: Test application

“tmsTestData -simdata”

“tmsTestData -test all -check -cont”
tmsStateGen: Cycle parameter generator

tmsSigGen: Test signal generator

tmsRestart: Restarts tmsServer and tmsPuServer programs

2007-11-05 TMS Training - Beam Ltd 32

TMS internal software development
All of the TMS software is available in source code form.

The TMS software can be built on the TMS system or another
Fedora Core 6 Linux system.

Split into the following Modules:

Tms – The main system software

Tms-sys – System Controller configuration

Tms-mcsys – Module Controller system

Tms-fpga – FPGA firmware

Tms-doc – system documentation
The tms-full-src-<VERSION>.tar.gz archive contains the full

source code.

2007-11-05 TMS Training - Beam Ltd 33

TMS Software Libraries
libBeam.a: BEAM Object API. Includes basic String, List and Array

classes as well as the BOAP RPC system.

libBDebug.a: BEAM Debug utilities include crash backtrace
system.

libTms.a: Main TMS API library. Includes client and server side
BOAP interface objects as well as CycleParameter table
generation and management classes.

libadmxrc2.so: Alpha Data ADMXRC interface library. Uses the
admxrc2 Linux kernel driver to communicate with the PUPE
boards.

2007-11-05 TMS Training - Beam Ltd 34

Building and packaging main software
Uses the make system

Overall make configuration in “Makefile.config”. Includes version
number.

“make clean” - Cleans the software tree

“make” - Builds the software tree

“make rpm” - Builds the RPM package

“make rpmInstall” - Installs the RPM's in the
packages directory

You can also use make install, as root, to install the software
directly without packaging it first.

Note tms-mcsys uses the kernel and drivers (including Admxrc2)
from the build system.

2007-11-05 TMS Training - Beam Ltd 35

TMS Cycle Parameter Tables
Contains FPGA state and phase table parameters describing a

complete PS machine cycle.

Information on what to do on events and internal PLL tables.

Cycle is split into Cycle Periods: Calibration, Event0, Event1, ...

The FPGA hardware can acquire a complete set of data for a
cycle with no software intervention.

The TMS Server keeps a library of Cycle Parameter tables in
ASCII files indexed by a cycle type string.

The Cycle Parameter tables are passed to all Module controllers
which store there contents in internal data structures. The same
information is sent to all PUPE channels.

The Cycle Parameters are loaded into the FPGA's on the
CYCLE_STOP event or on the setNextCycle() call whichever is
later.

2007-11-05 TMS Training - Beam Ltd 36

FPGA State tables
Set of 16 possible states

Change of state on timing event or a delay of 16 FREF periods.

Set of control bits for each state

State 14 is error state – interrupt generated

State 15 is stopped state

Each state has a separate phase table (512 bytes)

2007-11-05 TMS Training - Beam Ltd 37

TMS State Tables – Control bits

Name Bits Description

acquireData 0 The system will perform data acquisition if this bit is set. This will
allow entries to be made in the CycleTimingTable and in the
CycleDataTable if appropriate GATE strobes are present in the
PhaseTable for this state.

pllReference1 1 Selects the PLL source for the Filter 1 path. 0 – selects FREF, 1 –
selects Sigma.

pllReference2 2 Selects the PLL source for the Filter 2 path. 0 – selects FREF, 1 –
selects Sigma.

pllFeedbackSelect 3 Selects which of the Filter outputs to be used for the PLL error
value. 0 – selects filter 1, 1 – selects filter 2.

pllLO1FromAddress 4 This selects which PLL signal is to be used as the PLL internally
generated FREF for the Filter 1 path. 0 selects the LO1
phaseTable bit, 1 – selects the MSB of the PLL's phase counter.

pllLO2FromAddress 5 This selects which PLL signal is to be used as the PLL internally
generated FREF for the Filter 2 path. 0 selects the LO2
phaseTable bit, 1 – selects the MSB of the PLL's phase counter.

2007-11-05 TMS Training - Beam Ltd 38

State/Phase Table Switching

FInj NCO+

Phase
Tables

Low Pass
Filter+

+ Low Pass
Filter

Regulator

+

Sigma

FRef

PU Azimuth
Gate

BLR
Mean0
Mean1

LO1

LO2

pllReference1

pllFeedbackSelect

pllLO1FromAddress

pllLO2FromAddress

pllReference2

2007-11-05 TMS Training - Beam Ltd 39

FPGA State Tables - Events

Name Bits Description

cycleStop 11:8 This defines which state to move to when a CYCLE_STOP event
occurs.

calStop 15:12 This defines which state to move to when a CAL_STOP event
occurs.

calStart 19:16 This defines which state to move to when a CAL_START event
occurs.

injection 23:20 This defines which state to move to when a INJECTION event
occurs.

hchange 27:24 This defines which state to move to when a HCHANGE event
occurs.

delay 31:28 This defines which state to move to 16 FREF periods later. It can
be used to add a delay to the state/phase table switch or add a
section of different state/phase table settings for a 16 FREF period
after an event.

2007-11-05 TMS Training - Beam Ltd 40

FPGA Phase tables
● Set of 16 Phase tables, one for each state.
● Each phase table has 512 byte wide entries
● Two separate PLL local oscillator generation tables, LO1 and LO2
● Note each pulse should be at least two clock cycles long due to PLL operation.

Name Bits Description

lo1 0 The LO1 PLL signal used in the filter 1 feedback path.

blr 1 The base line restoration signal. When high BLR is being
calculated

gate 2 The gate signal used to acquire data.

lo2 3 The LO2 PLL signal used in the filter 2 feedback path.

meanFilter1 6 A pulse which sends the current integral values into the bunch
mean filter 1. Typically used to return integral values every ms for
all particle bunches.

meanFilter2 7 A pulse which sends the current integral values into the bunch
mean filter 2. Typically used to return integral values every ms for
the first particle bunch.

2007-11-05 TMS Training - Beam Ltd 41

How to generate Cycle Parameter's
Cycle Parameters are stored in ASCII files on the TMS Server.

New or updated sets of parameters can be uploaded using the
TMS API. The TmsServer program will send these out to all
module controllers.

The tmsControl and tmsControlGui programs can read an ASCII
Cycle Parameter file and send it to the TMS System using the
TMS API. So the user can generate a set of Cycle Parameters
in an ASCII file and upload this to the TMS server.

The tmsControlGui program has a simple high level Cycle
Parameter editor built in.

The tmsStateGen program creates a set of simple test Cycle
Parameter's. It can be extended to support other Cycle types.

The TMS API library has support for reading and writing the Cycle
Parameter files and creating them based on a high level
definition.

2007-11-05 TMS Training - Beam Ltd 42

TMS FPGA Firmware
The TMS FPGA Firmware is packaged in RPM format

Written in VHDL

Build environment is Xilinx Foundation Express

To package:

Build bit file. Make sure internal version number is updated.

Copy bit file to tms-fpga directory with appropriate version
number

Symbolically link this bit file with tms-fpga.bit

Run “make rpm” to build package

Run “make rpmInstall” to install the package in packages

Make sure bit file does not cause overheating of the FPGA

The cern-tms-rel_<VERSION>.zip archive contains the source
code.

2007-11-05 TMS Training - Beam Ltd 43

FPGA VHDL Synthesis
Synthesis is achieved using ISE tools (9.2)

Build uses make file (makefile_tms_pupe or
makefile_tms_pupe_inc)

The XST project file and build scripts are: tms_pupe_xst.scr and
tms_pupe_xst.prj

The project can be built from the command line using nmake -f
makefile_tms_pupe

Synthesis scripts and files are located in the synthesis directory.
The UCF file contains placement constraints for the SDRAM
controller block memories. Without these constraints memory
read errors can occur.

3 main directories: tms-processing contains the signal processing
code core, pupe-wrapper contains the interfacing code,
ddr2_memory_interface contains the DDR2 memory interfaces.

2007-11-05 TMS Training - Beam Ltd 44

FPGA Block Diagram

ADC
Interface

PU #0

PU #1

PU #2

Test Data
SDRAM Controller

ADC Control

IRQ Reg

Hardware
Interface

Layer
(connection to PCI and SDRAM)

Sync/Timing
In from Prev. Board

Sync/Timing
Out to next Board

System Bus

Timing Interface Unit

2007-11-05 TMS Training - Beam Ltd 45

FPGA PupeAPI
Register and shared memory Interface

4 MByte PCI window

System Control Registers: controlling the memory paging and
interrupts

Application Registers: for use by the PUPE modules

2 MB Memory window: for accessing SDRAM or Block RAM
banks

2007-11-05 TMS Training - Beam Ltd 46

FPGA Memory Map
Address Name R/W Description
0x000000 IMEM_REG RW Block RAM Index
0x000008 LOCKED RO DCM Locked Status
0x000010 ADDR_REG RW PAGE Register for SDRAM access
0x000018 MEM_REG RW SDRAM Bank Select Register
0x000020 IER RW Interrupt Enable Register
0x000028 ISR RW Interrupt Status Register
0x000030 MEM_RAS RW SDRAM Read Address Scaling
0x000038 MEM_RAO RW SDRAM Read Address Offset
0x000040
-0x000058

MEM_GNTx WO Memory Grant Registers

0x000800
-0x0009FF

Application
Registers

RW See Application Memory map

0x200000
-0x3FFFF

Memory Window RW 2MB window for accessing SDRAM or Block RAM

2007-11-05 TMS Training - Beam Ltd 47

FPGA Application Registers
Address Name R/W Description
0x000800 FIRMWARE RO Firmware ID code “CN” + version numbers
0x000808 ADC RW ADC Control Register
0x000810 TIMING_IO RW Timing I/O Register
0x000818 TESTCTRL RW Test Data Control Register
0x000820 TESTLEN RW Test Data Pattern Length

Address Name R/W Description
0x000880 CONTROL RW PU General Control and Status register
0x000888 CYCLE RW Cycle number
0x000890 TIME RO Time in ms from start of cycle
0x000898 TIME_TBLADDR RO Last write address in timing table
0x0008A0 PLL_FREQUENCY RW PLL Reference orbit frequency
0x0008A8 PLL_FREQDELAY RW PLL frequency load delay
0x0008B0 PLL_PHASEDELAY RW PLL phase delay
0x0008B8 PLL_GAIN RW PLL gain
0x0008C0 DDS_FREQ_MIN RW PLL DDS minimum frequency
0x0008C8 DDS_FREQ_MAX RW PLL DDS maximum frequency
0x0008D0 DIAG_CTRL RW Diagnostics Control/Status
0x0008D8 DIAG_TRIGGER RW Diagnostics Trigger
0x0008E0 DIAG_DELAY RW Diagnostics Capture Delay
0x0008E8 TEST RW Timing Test

2007-11-05 TMS Training - Beam Ltd 48

FPGA Shared Memory
SDRAM BANKS

Bank Addresses Function
0 0x0000000-0xFDFFFFF PU #0 Cycle Data Table
0 0xFE00000-0xFFFFFFF PU #0 Bunch Mean Tables
1 0x0000000-0xFDFFFFF PU #1 Cycle Data Table
1 0xFE00000-0xFFFFFFF PU #1 Bunch Mean Tables
2 0x0000000-0xFDFFFFF PU #2 Cycle Data Table
2 0xFE00000-0xFFFFFFF PU #3 Bunch Mean Tables
3 0x0000000-0xFFFFFFF Test Pattern Buffer

BLOCK RAM BANKS

Bank Size (min
2kB)

PU Bit Width Function

0 32kB 0 64 Cycle Timing Table
1 2kB 0 64 Cycle Information Table
2 2kB 0 8 Timing Phase Table
3 2kB 0 32 Timing Switch Table
4 8kB 0 64 Diagnostics table
5 8kB 0 64 Bunch Mean Table #0
6 8kB 0 64 Bunch Mean Table #1

2007-11-05 TMS Training - Beam Ltd 49

FPGA Interrupts

Bit Function
0 PU #0 CYCLE_START
1 PU #0 CYCLE_STOP
2 PU #0 ERROR
3 PU #0 DIAGNOSTIC INFO CAPTURED
4 PU #0 SDRAM Write FIFO Half Full
5-7 PU #0 User Interrupts (Switch Table bits 5-7)
8 PU #1 CYCLE_START
9 PU #1 CYCLE_STOP
10 PU #1 ERROR
11 PU #1 DIAGNOSTIC INFO CAPTURED
12 PU #1 SDRAM Write FIFO Half Full
13-15 PU #1 User Interrupts (Switch Table bits 5-7)
16 PU #2 CYCLE_START
17 PU #2 CYCLE_STOP
18 PU #2 ERROR
19 PU #2 DIAGNOSTIC INFO CAPTURED
20 PU #2 SDRAM Write FIFO Half Full
21-23 PU #2 User Interrupts (Switch Table bits 5-7)

2007-11-05 TMS Training - Beam Ltd 50

TMS Testing
The system has a number of features for testing:

Internal API's test function can to perform a basic system test.

Diagnostics API functions to capture important internal FPGA
signals.

Software simulation of timing signals.

Generation of Sigma, DeltaX, DeltaY and FRef input signals
from SDRAM based signal generator.

Messages in /var/log/messages.

Low level program debug arguments.

TMS test signal generator.

2007-11-05 TMS Training - Beam Ltd 51

Testing using simulated timing and data
Useful test method when no live data is available.

Timing signals generated in software and applied to Master PUPE
in each sub-rack.

Data source comes from PUPE SDRAM instead of ADC input.

Can be setup manually using the tmsControlGui's “Pupe
Simulation” tab.

The tmsTestData's “-simdata” option allows the complete system
to be set to simulation mode.

Note that the “SimulateNextCycle:” field in the /etc/tmsServer.conf
file needs to be set to 1 to simulate the setNextCycle call.
External systems should be disabled from calling this call.

The tmsTestData program can be used to run soak tests on the
data. “tmsTestData -test all -check -cont localhost”

2007-11-05 TMS Training - Beam Ltd 52

Testing on a live system
The Test API function can use used to perform an overall test.

The Status API function can be used to find the status of the
system, including the voltages and temperatures of the PUPE
FPGA boards.

The Statistics API function keeps a count of errors that have
occurred.

The Diagnostics capture function can be used to look at the
internal FPGA signals.

The /var/log/messages log can be viewed for any warning or error
messages.

The API's errorEvent can be monitored for errors.

2007-11-05 TMS Training - Beam Ltd 53

TMS Trouble shooting
Hardware trouble shooting has been given earlier

Use the systems Test API function via the tmsControlGui program
or the web interface.

If the systems Test API function is not working check that the
“tmsServer” program is running on the system controller and
that the “tmsPuServer” programs are running on the module
controllers.

Check the /var/log/messages file for any errors listed.

The system can be restarted using the “tmsRestart” command.

If the “tmsServer” or any “tmsPuServer” programs crash, a
backtrace will be listed in the /var/log/messages file.

The tmsServer or tmsPuServer programs can be started manually
using the “-f” and “-d 0x03” flags to run them in the foreground
and display debug messages. See the manuals on the
programs for the “-d” options available.

2007-11-05 TMS Training - Beam Ltd 54

Multiple System Controller Support
Two TmsServers: 192.168.100.1 and 192.168.100.2

Both systems can be setup identically apart from:

DHCP disabled on second server

TmsServer disabled on second server

tmsServer.conf and tmsPuServer.conf files set to use
second server.

Second Server could be configured to manage spare module and
3 PUPE boards.

Server would supply DHCP information for spare
module controller.

tmsServer.conf and tmsPuServer.conf files set to use
second server.

2007-11-05 TMS Training - Beam Ltd 55

TMS Future Development
Improving the FPGA algorithms including: BLR, PLL.

Improving Software functionality.

Adding data post processing algorithms.

Adding support for linked PLL's taking Sigma from three channels.

Adding extra software API functions.

Increasing data bandwidth by using PUPE Ethernet interfaces.

Adding FPGA based post processing.

Could allow both System Controllers to function with automatic
handover.

Could reduce ADC noise. Internal panels. Move power supplies.

2007-11-05 TMS Training - Beam Ltd 56

TMS – Further Information

Further information is available on the support website
at: http://portal.beam.ltd/support/cern

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

