
CERN Trajectory Measurement System

Software Manual

Project CERN-TMS

Date 2013-02-01

Reference Cern-tms/TmsSoftware

Version 2.0.0

Author Dr Terry Barnaby

Table of Contents
1. References..2
2. Introduction..2
3. System Overview...2

3.1. Pick-Up Processing Engine (PUPE)..3
3.2. Module Controller (MC)..4
3.3. System Controller (SC)...4
3.4. Client Application’s (CLIENT)...4

4. Software Environment and Tools...4
5. Operational Overview..5

5.1. TMS Cycle Parameters State/Phase Tables...6
5.1.1. Cycle Parameter State/Phase Table Configuration...6
5.1.2. Cycle Parameter File Format..9
5.1.3. Cycle Parameter Configuration...9
5.1.4. Cycle Parameter Configuration Notes..11

5.2. TMS Data Access..11
6. Software Structure..13

6.1. File Structure...14
7. System API’s..15

7.1. System Controller API (TmsApi)..16
7.1.1. TMS Control Object (TmsControl)..16
7.1.2. TMS Process Control Object (TmsProcess)...18
7.1.3. TMS Event Object..18

7.2. TMS Data Client access...19
7.3. The Raw Data..23
7.4. The Mean Data..23

8. TMS Testing...23
8.1. Using Test Data...24
8.2. Software Generation of setNextCycle() calls..24
8.3. Software timing...24
8.4. Diagnostics Capture...25

9. Multiple System Controllers..26
10. FPGA Bit Files...27
11. Further Software Documentation...27
12. Error Handling..27
13. Software Distribution and Updates..28

Document: cern-tms/TmsSoftware Page 1 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

1. References
● IT-3384/AB: Technical Specification for a new trajectory measurement system for the CERN Proton

Synchrotron.

● TMS design documents systemDesign, pupeFpgaDesign, pupeBoardDesign.

● TMS Development and Support website at: https://portal.beam.ltd.uk/support/cern/.

2. Introduction
This TMS Software Manual provides an overview of the CERN Trajectory Measurement System (TMS)
Software and describes in detail the configuration and usage of the system. It is mainly concerned with
the usage of the Software API's for controlling and gathering data from the CERN Trajectory
Measurement System (TMS).

Other documents available include:

● The “TMS Overview” document that provides an overview of the system.

● The “TMS Maintenance” document which describes system installation and maintenance.

● The” TMS Test” document describing system testing.

● The “TMS SigGen” document describing the test signal generator.

● The “TmsControlGui” document describes the TmsControlGui test and diagnostics GUI
applicatrion.

● The “TMS API” documentation describing, in detail, the TMS software API's.

The TMS system is designed to measure the trajectory of particle beam's within the CERN Proton
Synchrotron and Booster Proton Synchrotron machines. It is able to measure the amplitude and x/y
displacement of the individual particle bunches as they pass each of the analogue sensors in the ring. The
system integrates the amplitude of the data received for each particle bunch and stores the results in
memory for later data access. In order to accurately measure the particle bunches the system uses phase
locked loops to synchronise the data capture to the incoming data.

The system continuously samples over 120 Analogue channels at 125MHz, 14 bits and processes this data
in real-time to determine information on the position of particle bunches as they orbit at around 437kHz.
The system thus captures and processes over 15 billion samples per second. Multiple Xilinx Vertex 4
FPGA's are employed in a modular system to capture and process the data. The system is controlled over
a Gigabit Ethernet network from which portions of the resulting data can be accessed.

Within the TMS, the main, high speed, data processing work is carried out in FPGA hardware using
specially developed FPGA firmware written in VHDL. The system software’s main responsibility is to
provide control, timing, data access and test functions for the system.

To gain an understanding of the overall systems design please refer to the “TMS Overview” document.

Document: cern-tms/TmsSoftware Page 2 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
https://portal.beam.ltd.uk/support/cern/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

3. System Overview
The main, high speed, data processing work is carried out in FPGA hardware. The system software’s
main responsibilities are to provide control, data access and test functions for the system.

All of the system software is based on the Linux operating system. This provides a reliable and flexible
system that can be easily maintained locally and remotely. All of the software is Open Source and thus all
source code is available.

All communications with external systems is through the System Controller (SC) which supports a simple
API to control and gather data from the system. The System Controller interrogates the individual Pick-
Up Processing Engines (PUPE) via the local Gigabit Ethernet network and the Module Controllers (MC).
The TMS’s API can be used across the network interface from a remote system or locally from
applications running on the System Controller.

The System Controller also supports a basic HTTP web interface for viewing system status and getting
data.

The software has been developed on the GNU/Linux operating system using the Open Source GNU tool-
set. The software is predominantly written in the ‘C++’ language.

From the software’s perspective there are four main modules in the system, the Pick-Up Processing
Engine (PUPE), the Module Controller (MC), the System Controller (SC) and the Client Application
(CLIENT).

The TMS has a private Gigabit Ethernet Network to which the Module Controllers and System
Controllers are connected. The System Controllers have dual Gigabit Ethernet interfaces, one is connected
to the TMS’s private network and the second is connected to the CERN local area network.

Document: cern-tms/TmsSoftware Page 3 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

Illustration 1: TMS Main System Modules

PUPE

Module
Controller

tmsPuServer

System
Controller
tmsServer

Module
Controller

tmsPuServer

PUPE

PUPE

PUPE
Client

Application

TmsPuApi

TmsApi

PupeApi

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

3.1. Pick-Up Processing Engine (PUPE)

The PUPE is the main module in the TMS system. It performs the analogue data capture and real-time
data processing functions of the TMS. The PUPE is based on FPGA technology and is implemented as a
cPCI board installed in a Compact PCI 19inch rack. Each PUPE engine implements 3 pick-up processing
channels each having 3 ADC’s. The PUPE is accessed via the cPCI bus from a cPCI Module Controller
board.

The PUPE FPGA boards are booted from the systems Module Controller (MC) using the standard Alpha
Data FPGA boot protocol. Control and data access is implemented using the PUPE API across the 64 bit
33MHz cPCI bus. The PUPE API is defined in the PupeFpgaDesign document.

3.2. Module Controller (MC)

The module controller is a conventional cPCI system controller. It is based on an Intel x86 CPU and has
some boot FLASH memory, at least 1 Gigabyte of RAM, a cPCI bus interface and three Gigabit Ethernet
ports. The boards used include a Concurrent Technologies PP 41x/03x board and a PP 712/083-13.

The Module Controller boot's from the main System Controller (SC) over a Gigabit Ethernet interface and
runs a small Linux based operating system. It is responsible for booting and managing the PU processing
engines (Up to 18 Proton Synchrotron PU’s) on its cPCI bus. Communications between the SC and the
individual PU processing engines is also be handled.

The Module Controller runs the tmsPuServer program that implements a simple network based API,
TmsPuApi, for control and access to the individual PUPE channels.

3.3. System Controller (SC)

The system controller is a standard Intel Xeon based server computer system. It is housed in a separate
2U or 4U 19” rack enclosure. The system controller has at least 2 Gigabyte’s of RAM and dual SATA
disk drives in a RAID 1 configuration for disk redundancy. These disks contain all of the TMS’s software,
FPGA firmware and configuration information. The controller has dual Gigabit Ethernet interfaces, one
connected to the Gigabit switch that communicates with the Module Controllers and one connected to the
sites LAN for remote access to the system.

The SC can run without a monitor, keyboard or mouse, but these can be connected if desired to see
diagnostics locally. All system configuration and maintenance can be carried out over the Ethernet
network either through Linux or at a BIOS level through the IPMI interface. The system controller runs
the Linux operating system.

As well as providing a control and data interface to the Trajectory Measurement System, the software on
the system controller implement's system boot, system configuration, system test and fault diagnostics
functions. Access to this information is made available to operators via a web based interface as well as
through command line and X-Windows GUI API's.

3.4. Client Application’s (CLIENT)

The client applications are CERN’s system control and data gathering applications. These will probably
reside on different systems and communicate with the TMS through the Gigabit Ethernet interface. It is
also possible for CERN to implement these applications on the TMS’s System Controllers if desired. The
Client Applications will translate between CERN’s specific control and data access protocols and the

Document: cern-tms/TmsSoftware Page 4 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
http://www.gocct.com/sheets/PP/pp71208x.htm
TmsSoftware.odt/pupeFpgaDesign.pdf
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

TMS’s internal control and data protocols.

4. Software Environment and Tools
All of the TMS’s software is developed within the Linux operating system environment and uses the
Linux operating system as its base system layer. The base Linux distribution used is Centos 6.3. The TMS
individual systems, the MC and SC, have a limited installation of this operating system, the Module
Controllers in particular have a very cut down system based on the Busybox utility.

The main software development tools are the GNU tool-set and the main development language is ‘C++’.
These tools are installed on the System Controllers but can be used on a separate systems. The SVN
version control system is used for version control.

All software is supplied in source code as well as binary forms.

5. Operational Overview
The TMS system is designed to measure the trajectory of particle beam's within the CERN Proton
Synchrotron. It is able to measure the amplitude and x/y displacement of the individual particle bunches
as they pass each of the analogue sensors in the ring. The system integrates the data received for each
particle bunch and stores the results in PUPE memory for later data access. In order to accurately measure
the particle bunches the system uses phase locked loops to synchronise the data capture to the incoming
data.

The TMS system has been designed to work with single ring or multi-ring systems such as the Booster PS
machine.

The TMS operates in processing cycles lasting about 1.2 seconds. A number of hardware timing signals
are provided by the PS machine to synchronise the TMS to various PS machine events. The timing
signals are:

Name Description

10 MHz system clock Master system clock. The ADC’s 125 Mhz sampling clock is optionally
synchronised to this clock and all of the digital timing signals, except the
Injection signal, are re-synchronised to the +ve edge of this clock within each
FPGA.

FRef Input PS machine reference frequency. This is a square wave signal synchronised
with the particle beams orbit at one point in the ring.

CYCLE_START Start of a machine cycle. The PUPE's cycle time ms counter is reset to 0 and
the system starts capturing new set of cycle data.

CYCLE_STOP End of a machine cycle. Data from the previous cycle will now be made
available to client applications.

CAL_START Start of calibration period.

CAL_STOP End of calibration period.

INJECTION Injection. The particle beam has been injected into the PS ring.

H-CHANGE Input Harmonic change. The PS ring moves from operating at one harmonic to

Document: cern-tms/TmsSoftware Page 5 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

Name Description

another.

As well as the hardware timing signals there is one software timing signal. The PS system will tell the
TMS the cycle number and cycle type of the next processing cycle prior to the hardware CYCLE_START
signal. This is handled by calling the setNextCycle function of the TMS API with the cycle number and
cycle type. This should be done at least 10ms before the CYCLE_START signal for the cycle it refers to.
An ideal timing would be on the CYCLE_STOP event for the previous cycle. This gives the system
plenty of time to load the FPGA's with the new state/phase tables.

The cycle number is a 32bit unsigned incrementing integer and the cycle type an ASCII string. The cycle
type string defines the PUPE state/phase tables to be used for measuring the particle beam that will be
present in the machine for that cycle. The TMS will arrange for the correct State/Phase tables to be loaded
before the CYCLE_START event for the next processing cycle.

The TMS system will continually capture, process and store the resulting data into the individual PU
channel memory on the FPGA's. There is sufficient memory to store about 3 cycles worth of data in this
memory depending the the particle beam's harmonic number and number of bunches. Client applications
can read this data within the, around, 2.4 second window that the data is available. As well as the main
particle beam's Sigma/DeltaX and DeltaY integral data, the TMS system computes, on the fly, the average
Sigma/DeltaX and DeltaY values over each1ms period. This, lower bandwidth, data can be accessed by
the clients also within the same 2.4 second window that the data is available.

5.1. TMS Cycle Parameters State/Phase Tables

Each PUPE channel has an individual state table and PLL phase table system that is used to manage inter-
cycle events and provide the necessary phase locked timing signals for data capture and processing of a
particle beam's trajectory. The TMS keeps a library of these Cycle Parameter State/Phase tables indexed
by a cycle type string, ring number and channel number. The library is stored on disk as a set of simple
ASCII files. See the section on Cycle Parameter file format for more details. The master TmsServer
program sends the complete set of Cycle Parameter data to each TmsPuServer program on initialisation.
Thus each Module Controller has the complete library of State/Phase tables, in internal data structures, so
they can be loaded into individual PU channels on the fly. The TmsPuServer program will load each
FPGA's PUPE channel with the cycle parameters on thesetNextCycle API call or on the CYCLE_STOP
event which ever is the later.

The Cycle Parameter information is normally the same for every ring and every channel within the ring
except for and individual frefPhaseDelay parameter which defines the position of the pick-up within the
PS ring. It is, however, possible to load an individual set of Cycle Parameters into an individual PUPE
pick-up channel if necessary on a ring and/or channel number basis.

The TmsServer's TmsControl API provides the ability to update the Cycle Parameter library while the
system is in operation.

The set of Cycle Parameters will need to be set up for all of the possible PS machine beam type cycles.
We have supplied a simple program, tmsStateGen, that will generate simple State/Phase tables for some
test beam sources. It is also possible to use the tmsControlGui application that has a basic Cycle
Parameter editor built in. Information on the Cycle Parameters and their use is given below. Full details of

Document: cern-tms/TmsSoftware Page 6 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

the content of the State/Phase tables can be found in the TmsPupeFirmware manual.

5.1.1. Cycle Parameter State/Phase Table Configuration

Most of the Cycle Parameter information is loaded into the FPGA's individual PUPE channel's registers
and table RAM. However, some of the parameters are used for the software when retuning information on
the cycle and for fetching data from the PUPE memory. The Cycle Parameter information contains the
following parameters:

Field Description

cycleType This is the Cycle Type string this configuration is for.

name A name for this table. Used for debugging individual ring/channel tables

info An arbitrary string describing the BEAM type this configuration is for.

ring The ring number this configuration is for. A ring number of 0 indicates all
rings.

channel The channel number this configuration is for. A channel number of 0
indicates all channels.

pllCycleStartFrequency This defines the initial PLL frequency. This is loaded on the
START_CYCLE event. This value should be close to 2^32 * FREF /
125.0e6.

pllInitialFrequency The initial value loaded into the PLL's initial frequency register after the
pllInitialFrequencyDelay period from CYCLE_START. This value should
be close to 2^32 * FREF / 125.0e6.

pllInitialFrequencyDelay This is the delay, in milliseconds, after the CYCLE_START event that the
pllInitialFrequency value is loaded into the PLL. The delay is there to
allow the FREF timing input to have stabilised before the PLL attempts a
lock.

pllFrefGain This is the gain value applied to the incoming FREF signal before using as
a reference for the PLL. FREF is a binary timing signal. The FREF signal
used for the PLL will have the values +pllFrefGain and -pllFrefGain.

A typical value for this would be around 4096 to match the incoming
values of Sigma.

pllGain This parameter provides a control of the gain of the PLL feedback path. Its
value defines the number of right shifts (divides) that are applied to the
binary error value. The PLL filters have a gain of about 128, so a value of 7
here will be equivalent of a loop feedback gain of 1. Note that the PLL
feedback gain is also dependant on the level of Sigma and pllFrefGain
depending the the reference source being used.

pllDdsMinimum This defines the minimum frequency that the PLL's frequency register will
go down to. If this value and pllDdsMaximum are set to 0 there are no
bounds to the PLL frequency.

pllDdsMaximum This defines the maximum frequency that the PLL's frequency register will
go up to. If this value and pllDdsMinimum are set to 0 there are no bounds

Document: cern-tms/TmsSoftware Page 7 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

to the PLL frequency.

settings This is an array of strings describing the basic parameters for each of the
TMS's data capture states. It is used to allow Cycle Information editors to
edit the State/Phase tables, contained within the Cycle Information, at a
high level.

frefPhaseDelay This is an array of phase shift values for each of the PU channels. The
phase shift effectively applied to the incoming FREF global timing signal
so that the locally generated FREF signal and other PLL signals can be
phase aligned to the channels PS ring position. Its value can be plus or
minus and is in 1/512 of a rotation or 0.703125 degrees.

stateTable This is the array of state table entries. There can be up to 14 entries in this
table. Each entry defines a set of events that will move the pick-up channel
to a new state, defines the settings of various parameters for the state, the
number of particle bunches that will be acquired and the Phase Table to be
used.

State Table Configuration

Field Description

period The Cycle period this state is used for

state This defines the state configuration bits and the state transition on event values. It is
a 32bit value with the bits defined below.

numBunches This defines the number of particle bunches that will be acquired per orbit. It is used
for the calculation of a data offset based on the orbit number.

harmonic This is the machines harmonic number

bunchMask Bitmask defining which buckets the bunches are captured from. Bit 0 is bucket 1, bit
1 is bucket 2 etc

phaseTable This is the phase table to be used for the state. There are 512 8bit entries in the table.
The definition of the bits is given below:

State Bit Definitions

Name Bits Description

acquireData 0 The system will perform data acquisition if this bit is set. This will
allow entries to be made in the CycleTimingTable and in the
CycleDataTable if appropriate GATE strobes are present in the
PhaseTable for this state.

pllReference1 1 Selects the PLL source for the Filter 1 path. 0 – selects FREF, 1 –
selects Sigma.

pllReference2 2 Selects the PLL source for the Filter 2 path. 0 – selects FREF, 1 –
selects Sigma.

pllFeedbackSelect 3 Selects which of the Filter outputs to be used for the PLL error value.
0 – selects filter 1, 1 – selects filter 2.

Document: cern-tms/TmsSoftware Page 8 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

pllLO1FromAddress 4 This selects which PLL signal is to be used as the PLL internally
generated FREF for the Filter 1 path. 0 selects the LO1 phaseTable
bit, 1 – selects the MSB of the PLL's phase counter.

pllLO2FromAddress 5 This selects which PLL signal is to be used as the PLL internally
generated FREF for the Filter 2 path. 0 selects the LO2 phaseTable
bit, 1 – selects the MSB of the PLL's phase counter.

cycleStop 11:8 This defines which state to move to when a CYCLE_STOP event
occurs.

calStop 15:12 This defines which state to move to when a CAL_STOP event occurs.

calStart 19:16 This defines which state to move to when a CAL_START event
occurs.

injection 23:20 This defines which state to move to when a INJECTION event
occurs.

hchange 27:24 This defines which state to move to when a HCHANGE event occurs.

delay 31:28 This defines which state to move to 16 FREF periods later. It can be
used to add a delay to the state/phase table switch or add a section of
different state/phase table settings for a 16 FREF period after an
event.

Phase Table Bit Definitions

Name Bits Description

lo1 0 The LO1 PLL signal used in the filter 1 feedback path.

blr 1 The base line restoration signal. When high BLR is being calculated

gate 2 The gate signal used to acquire data.

lo2 3 The LO2 PLL signal used in the filter 2 feedback path.

meanFilter1 6 A pulse which sends the current integral values into the bunch mean
filter 1. Typically used to return integral values every ms for all
particle bunches.

meanFilter2 7 A pulse which sends the current integral values into the bunch mean
filter 2. Typically used to return integral values every ms for the first
particle bunch.

5.1.2. Cycle Parameter File Format

The State/Phase table library files have a simple ASCII format. There is a single entry per line consisting
of a field name followed by a colon and then the data value. The field names match the State/Phase table
parameter names appending with an integer index in the case of arrays.

The Cycle Parameter files are read when the TmsServer program is started or when the API function init
is called. Normally the TMS API function setControlInfo is used to update an individual set of Cycle
Parameters. When this function is used the Cycle Parameter files on the server are updated and the Cycle
Parameters are propagated to all of the TMS module controllers.

Document: cern-tms/TmsSoftware Page 9 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

5.1.3. Cycle Parameter Configuration

The Cycle Parameters can be configured in a number of ways. The TMS software provides a simple high
level configuration system that can be accessed from the tmsStateGen command line program or the
tmsControlGui GUI control program. The user can also generate the Cycle Parameters manually into an
ASCII file and upload them to the TMS using the setControlInfo API function via the tmsControlGui
or tmsControl programs.

The TMS configuration system is implemented in the TMS API library in the CycleParamEdit class.
This simple software class provides the ability to read and write the Cycle Parameter files and to setup the
parameters based on a high level description of the PS cycle. It is used by the tmsStateGen and the
tmsControlGui programs.

In the TMS each PS cycle is split into separate active cycle periods. These periods are defined by events
such as CYCLE_START, INJECTION and harmonic change. The high level cycle description defines all
of the fixed cycle parameters and then has a list of parameters for each of these active cycle periods. For
each cycle period the following parameters are defined:

period The cycle period

state Defines next state numbers on events and the bit field settings for the state.

bunchMask The set of bunches to capture bit mask. This defines the bucket to bunch
relationship. If a bit is set then the bunch data will be captured for the given bucket.
Bit 0 is for bucket 1, Bit 1 is for bucket 2 etc.

mean1Mask The set of bunches to pass through meanFilter1. This is used as the mean filter
strobe for the new bunch mean system as well as then older all bunch average
system. It should generally have the same value as the bunchMask.

mean2Mask The set of bunches to pass through meanFilter2. Note that this function is
depreciated in favour of the new bunch mean system.

lo1Harmonic The LO1 harmonic number used in this state. This defines the number of buckets.

lo1Phase The phase offset of the LO1 as a fraction of FREF (+-1.0).

lo2Harmonic The LO2 harmonic number used in this state. This defines the number of buckets.

lo2Phase The phase offset of the LO2 as a fraction of FREF (+-1.0).

gateWidth The gate pulse width as a fraction of LO (0 - 1.0)

gatePhase The gate phase offset as a fraction of LO (0 - 1.0)

blrWidth The gate pulse width as a fraction of LO (0 - 1.0)

blrPhase The gate phase offset as a fraction of LO (0 - 1.0)

The TMS PUPE's PLL has two separate frequency generators LO1 and LO2 complete with separate
feedback filters. Normally these are used in tandem so that at an event the system can swap its lock
frequency with the minimum of phase jitter. Given a set of cycle period parameters as defined above, the
software will then generate a set of state/phase tables with appropriate alternating LO1 and LO2 entries.
So, for example, with a BEAM that may have a calibration period and then a harmonic 8 period after
injection followed by a harmonic change to harmonic 16, you just enter the details for each of these

Document: cern-tms/TmsSoftware Page 10 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

periods. The software would then generate the necessary PUPE states as follows:

State Description

0 Awaiting calibration or injection

LO1 – FREF, LO2 - Harmonic 8 settings, Active – L01

1 Calibration period, awaiting calibration stop or cycle stop

LO1 – FREF, LO2 - Harmonic 8 settings, Active – L02

2 Awaiting injection

LO1 – FREF, LO2 - Harmonic 8 settings, Active – L01

3 Event0 period, harmonic 8 capture

LO1 - Harmonic 16 settings, LO2 - Harmonic 8 settings, Active – L02

4 Event1 period, harmonic 16 capture

LO1 - Harmonic 16 settings, LO2 - Harmonic 8 settings, Active - L01

So the states toggle between using LO1 and LO2 and corresponding LO phase tables are set-up for the
current and next state. Note the the FREF from LO1 or LO2 is not actually used as the PLL's address
MSB is used for this so that the phase delay per channel works (assuming this option is enabled which it
is by default).

5.1.4. Cycle Parameter Configuration Notes

The PUPE FPGA's state/phase table system has many possible settings. The TMS software requires some
of these settings to be configured in a certain way for the current software to work correctly. Some notes
are this follow:

● In the switch table the ACQ bit should be set for all cycle periods. This is because the software
assumes a continuous set of timing data in the cycle timing table.

● If any of the states is set to go to error state then the data capture for that cycle will be aborted and
an appropriate error returned to all clients requesting data for that cycle.

● The current software is designed to assume the MSB of the PLL is used as the local FREF signal
rather than the appropriate LO1 or LO2 frequency generators. This allows a single set of
state/phase tables to be used in all channels with a simple phase delay parameter to define the ring
position.

● The Mean Filter Clock Enable 0 phase table bit is used to sample the bunches for the new bunch
mean filter system as well as the old bunch filter 0 system.

● When using the TmsControlDiagnostics to look at the PLL timing with respect to Sigma, note that
the FPGA will delay sigma by approximately two clock cycles prior to the integration stage. This
the GATE, BLR, Mean1 and Mean1 filter pulses should be delayed with respect to the Sigma
signal displayed.

Document: cern-tms/TmsSoftware Page 11 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

5.2. TMS Data Access

The TmsServer's TmsProcess API provides the ability for client applications to easily obtain the
trajectory data from a PS machine cycle. There is a TmsServer program for each ring in the PS system.
The API provides a getData() call that takes a DataInfo parameter structure defining the data required.
The contents of this DataInfo parameter are as follows:

Field Description

cycleNumber The PS Cycle number to fetch data from.

channel The pick-up channel number.

cyclePeriod The cycle period the data to fetch data from.

startTime The start time in milli-seconds from the start of the required Cycle Period.

orbitNumber The starting orbit number (starting from 0).

bunchNumber The bunch number (starting from 1 (0 is all bunches)).

function The data processing function to perform or performed.

argument The Argument to the data processing function.

numValues The total number of data points to return.

The cyclePeriod value defines which particular period from the cycle to fetch data from. Each TMS
processing cycle is split into the following cycle periods:

Period Description

CyclePeriodStart From the start of the cycle

CyclePeriodCalibration From the start of the calibration period. Ie after CAL_START.

CyclePeriodEvent0 From the data after INJECTION to the first harmonic change

CyclePeriodEvent1 From the data after the first harmonic change to next harmonic change

CyclePeriodEvent2 From the data after the second harmonic change to next harmonic change

CyclePeriodEvent3 From the data after the third harmonic change to next harmonic change

CyclePeriodEvent4 From the data after the forth harmonic change to next harmonic change

CyclePeriodEvent5 From the data after the fifth harmonic change to next harmonic change

CyclePeriodEvent6 From the data after the sixth harmonic change to next harmonic change

CyclePeriodEvent7 From the data after the seventh harmonic change to next harmonic
change

The functions currently defined are as follows:

Function Description

DataFunctionRaw The raw Sigma,DeltaX,DeltaY integrated data

Document: cern-tms/TmsSoftware Page 12 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

DataFunctionMean The mean Sigma, DeltaX, DeltaY integrated data over 1Ms sample
periods. The mean values are available for all bunches on all channels.

DataFunctionMeanAll The overal mean Sigma, DeltaX, DeltaY integrated data over 1Ms sample
periods for all bunchens. The mean values are available for all channels.

DataFunctionMean0 The mean Sigma,DeltaX,DeltaY integrated data. 1Ms sample period for
all bunches although this is programmable. This function is depreciated
in favour of the new DataFunctionMeanAll function.

DataFunctionMean1 The mean Sigma,DeltaX,DeltaY integrated data. 1Ms sample period for
bunch 1 although this is programmable. This function is depreciated in
favour of the new DataFunctionMean function.

When a client calls the getData() call it will be blocked until the data for the cycle requested becomes
available. The getData() call can return a number of possible errors. See the detailed API documentation
and the section on Error Handling for more details.

It is also possible to use the TMS HTTP web interface to access the data although as this is an ASCII
based method, it is a slower interface.

6. Software Structure
There are two main software programs that run on the TMS System: The TmsServer and the
TmsPuServer programs. The TmsPuServer program runs on the Module Controllers and is responsible for
managing the PUPE engines. It uses the PupeApi to communicate with the individual Pick-Up processing
engines and implements the TmsPuControl and TmsPuService API's. The TmsServer program runs on the
System Controller and provides overall control of the system. There is one TmsServer processes for each
ring of the system. They use the TmsPuControl and TmsPuService API's to communicate with the
TmsPuServer programs and implement the TmsControl and TmsService API's.

These programs are automatically started at boot time and run with a real-time process priority. They are
multi-threaded programs and make use of the multiple CPU cores present on both the Module Controllers
and System Controller.

There are also two test and control applications. These are called tmsControl and tmsControlGui. The
tmsControl application is a simple command line application that can control and read data from the TMS
system. The tmsControlGui application is a simple GUI test application that performs the same role as the
tmsControl application but has a GUI for control, diagnostics and the displaying of results. These are
documented in the TmsTesting and TmsControlGui documents.

To aid with performing system tests there are two utility applications. The tmsSigGen program is
designed to produce simple test signals emulating BEAM types that could be present in the PS machine.
It can be used to generate Test waveform files for directly loading into the PUPE's test data RAM or can
be used to drive the Tms Signal Generator AWG test board to produce simulated data and timing signals
for the system.

The tmsStateGen program is designed to produce simple PUPE Cycle Parameter State/Phase tables for
the example PS BEAM sources. The TmsControlGui application can also be used to generate simple
Cycle Parameter State/Phase tables.

Document: cern-tms/TmsSoftware Page 13 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

The System Controller is responsible for:

1. Storing all of the systems software and FPGA firmware.
2. Managing software version control and software/firmware packaging by using the RPM packaging

format.
3. Providing system logs from all components including the Module Controllers. All of the Module

Controllers send their logs to this system.
4. Providing Network information to the Module controllers through DHCP.
5. Providing the Module controllers with their kernel and root file systems through NFS.
6. Providing time information to the Module Controllers.
7. Providing a diagnostics login to the Module Controllers.
8. Providing an effective fire-wall for the Module Controllers.
9. Managing the TMS's internal network bandwidth.
10. Providing the future ability to post-process data.
11. Providing a TMS GUI Diagnostics and Control interface.
12. Providing a TMS Web interface.
13. Providing a software development environment for the TMS system.

The TmsServer program is responsible for:

1. Overall TMS system management and control.
2. Maintaining the Cycle Parameter State/Phase table database. (Master TmsServer only)
3. Managing the sending of appropriate Cycle Parameter State/Phase tables to the TmsPuServer's.

(Master TmsServer only)
4. Making sure that the setNextCycle() information is sent through on time. (Prioritises system tasks

and internal network bandwidth).
5. Providing a queue for client requests and prioritises these queues.
6. Providing system events to the client applications.
7. Providing the ability to map individual PU channels to particular physical PUPE channels.
8. Managing the TmsPuServer programs.
9. Providing overall system error handling and collating errors to be logged or sent back to the client

applications.
10. Providing overall system state information.
11. Providing overall system statistics information.
12. Providing system test facilities.
13. Providing background diagnostics functions.
14. Providing the ability to perform whole system measurements from the whole set of PUPE's for

measurements such as phase space plots.
15. Providing the future ability to post-process data.
16. Providing the future ability to cache data requests to increase performance with multiple clients.

The TmsPuServer program is responsible for:

1. PUPE Board management and control.
2. Loading the FPGA's with appropriate bitfile firmware.
3. Loading the FPGA's with the appropriate Cycle Parameter State/Phase tables.
4. Receiving timing events from the PUPE boards.
5. Generating simulated timing signals.

Document: cern-tms/TmsSoftware Page 14 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

6. Providing Module state information.
7. Providing Module statistics information.
8. Providing Module test facilities.
9. Read the raw and mean data from the PUPE boards.
10. Providing the future ability to post-process data.

6.1. File Structure

Most of the TMS software is installed in /usr/tms this has the following sub directories:

Directory Usage

bin Executable programs

include 'C++' include files for development

lib Libraries for development

config Configuration utilities and template configuration files

fpga FPGA firmware

stateTables The Cycle Parameter tables

rootfs The master root file system for the module controllers.

rootfs-[1234] Copies of the master root file system for the individual module controllers. These are
mounted as the root file system for the module controllers.

tmsExamples Development example code

data Data files such as test signals

html HTML root for the TmsWeb program

tftpboot The module controllers boot files master. These are copied into /tftpboot

doc Documentation on the system.

The TMS TmsServer program's configuration file is in /etc/tmsServer.conf

7. System API’s
There are four main API’s used within the TMS. They are:

● PupeApi: This provides control and data access to the PUPE’s individual, FPGA firmware
implemented, Pick-Up channels. The interface implements a register level interface for control and
a shared memory interface for data access. It also supports a DMA interface for fast data access. It
is documented in the “PupeFpgaDesign” document.

● Module Controller API (PuApi): This provides software access to the individual Pick-Up
processing engines. The API implements a simple RPC network API to allow control and data
access to the individual Pick-Up channels. It also implements a system control, configuration and
test API. It is documented in the “TMS API” document.

● System Controller API (TmsApi): This provides software access to the whole of the TMS

Document: cern-tms/TmsSoftware Page 15 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

system. The API implements a simple RPC network API to allow control and data access to the
individual Pick-Up channels. It also implements a system control, configuration and test API. It is
documented in the “System Controller Controller API” section in this document.

● System Controller HTTP (Web): This provides a basic HTTP protocol interface to the TMS
system for viewing the status of the system and accessed raw data.

Each individual Pick-Up channel is allocated a Logical and Physical channel identifier. The Logical
channel identifier is a number between 1 and 40 and defines the PU channel number on a particular ring.
The Physical channel identifier consists of three parts: The Module Controller number (1 - 4), the Pupe
Engine number (1 – 5) and the Pupe Channel number (1 – 3). The systems configuration defines a
mapping between the logical and physical identifiers. This allows boards to be substituted while the
system is running by simply moving the input ADC lines and reconfiguring the logical to physical Pick-
Up channel number table.

A logical channel identifier of 0 is used to mean all channels on a ring. This use of 0 is also functional in
the physical identifier components to define all Module Controllers, all PUPE Engines on a Module
Controller and/or all channels of a PUPE Engine.

The Beam BOAP Object based RPC mechanism is used for the RPC. This provides a simple and efficient
binary object based RPC mechanism with event capability.

7.1. System Controller API (TmsApi)

Generally users of the system are only concerned with the top level, System Controller API. This is the
API that control and data gathering clients use to access the system. The System Controller API (TmsApi)
is implemented using a simple, object orientated, RPC mechanism. Two main objects, the TmsControl
and TmsProcess objects, provide the full API.

The TmsApi has been developed using the BOAP (BEAM Object Access Protocol). This provides a
simple but powerful and efficient Object Orientated RPC mechanism. The TmsApi is written in a high
level interface definition language (IDL). The bidl tool generates the client and server side 'C++' interface
and implementation files for the API. These are then provided as a set of 'C++' header files and a binary
library file for the client applications to link to. The BOAP system employs a simple BOAP name server
process that provides a translation between object names and the TCP/IP Address/Socket numbers that are
used for object communications. The BOAP name server runs on the System Controller. More
information on the BOAP system can be found in the libBeam documentation.

The TmsControl object is used for system configuration, testing and diagnostics. The TmsProcess object
is used by normal clients for Proton Synchrotron (PS) Cycle information configuration and data access.

The API is documented in the TmsApi document. An overview of the main API objects and their basic
functionality is given later in this document. There are some example client code in the tmsExamples
directory of the source code and is also listed in the TmsApi document.

Each client application connects to one or both of these control objects through a TCP/IP network
connection. The System Controller operates as a multi-threaded process and can communicate with
multiple clients simultaneously.

The TMS system takes most of its system timing signals from digital timing lines connected to the TMS
rack hardware. The only timing information that external software needs to supply is the next cycle

Document: cern-tms/TmsSoftware Page 16 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
http://libTmsApi/html/index.html
http://libTmsApi/html/index.html
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

number and cycle type information. This information consists of a 32bit unsigned number identifying the
next Proton Synchrotron (PS) machine cycle and an ASCII string defining the beam type of the cycle. The
CERN client software needs to provide this information by calling the setNextCycle() function at least
10ms before the next PS cycle is initiated.

A client application would generally use the TmsProcess object for its interface to the TMS system. It
would use the getData() method to fetch the required data from the system. There is also an event based
data interface implemented using the requestData() call and the TmsEvent event object.

Each of the TMS API calls return an error object. If there is an error, an appropriate error number will be
given together with a string describing the error.

7.1.1. TMS Control Object (TmsControl)

This is responsible for overall control of the TMS and for configuring and getting statistics from the
system. There follows an overview of the functions provided. Full details is provided in the TmsApi
document.

Function Description

init() Initialises the system including resetting all of the PUPE engines
firmware. The call will return an error object indicating success
or an error condition as appropriate.

setProcessPriority(UInt32 priority) Sets the priority of the process servicing this service

configure(ConfigInfo configInfo) Configure the system for use. This includes mapping the
individual physical Pick-Up channels to logical pick-up
channels.

setControlInfo(CycleParam params) Adds the state/phase control information for the given cycle type
to the TMS systems database of cycle types. The parameters for
the FPGA processing are passed. This includes the Phase and
State table information. The call will return an error object
indicating success or an error condition as appropriate.

delControlInfo (BString cycleType,
UInt32 ring, UInt32 puChannel)

Deletes the control information for the cycle type, ring and
puChannel number given. The call will return an error object
indicating success or an error.

getControlInfo(BString cycleType,
UInt32 ring, UInt32 puChannel,
CycleParam& cycleParam)

Gets the Cycle parameter information for a given Cycle Type.

getControlList (BList<
CycleParamItem > &itemList)

Gets the list of Cycle Parameters present in the system.

setNextCycle(UInt32 cycleNumber,
String cycleType)

Sets the cycle number and cycle type for the next processing
cycle. The call will return an error object indicating success or
an error condition as appropriate. This should be called at least
10ms before the next CYCLE_START event.

test(ErrorList& errorList) Performs a basic test of the system returning a list of errors. The
call will return a list of error objects indicating error conditions

Document: cern-tms/TmsSoftware Page 17 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

Function Description

that exist as appropriate. If no errors exist the call will return no
error objects.

getStatus(NameValueList& status) Returns the current status of the system. This information
includes the number of Pick-Up’s present and their individual
status.

getStatistics(NameValueList& stats) Returns a list of the statistic values as name/value pairs. The call
will return an error object indicating success or an error
condition as appropriate.

getPuChannel(int puChannel,
PuChannel& puPhysChannel)

Returns the physical PU channel given a logical channel
number. This uses the channel configuration table to look up the
physical channel identifier. This function is provided so that the
individual Pick-Up test functions can be accessed etc.

setTestMode(PuChannel
puPhysChannel, UInt32 testOutput,
UInt32 timingDisableMask)

The signal source for the digital test output connector. 0: None,
1: FrefLocal. The timingDisableMask bit mask defines which of
the timing inputs should be disabled. If a timing input is
disabled it can be still operated by software command.

setTimingSignals(PuChannel
puPhysChannel, UInt32
timingSignals)

This function sets the given timing signals to the values as
defined in the timingSignals bit array.

captureDiagnostics(PuChannel
puPhysChannel, TestCaptureInfo
captureInfo, Array<UInt64>& data)

This function will capture diagnostics test data. See the section
on diagnostics capture for more details.

setTestData (PuChannel
puPhysChannel, Int32 on, BArray<
UInt32 > data)

This function will set a PU channel to sample data from test data
memory rather than the ADC's. The data parameter points to an
array of test data to use. See the section on “Using Test Data”
for more information.

setPupeConfig (PuChannel
puPhysChannel, PupeConfig
pupeConfig)

Sets special PUPE configuration for test purposes. The
PupeConfig structure defines the settings.

7.1.2. TMS Process Control Object (TmsProcess)

This object controls the TMS cycle processing and data gathering functions.

Function Description

getCycleInfo(out UInt32
cycleNumber, out String cycleType)

Gets the current cycle number and type.

getCycleInformation(UInt32
cycleNumber, CycleInformation&
cycleInformation)

This function gets detailed information on the given cycle
number. This includes the timing of all CyclePeriods and the
amount of data captured.

getCycleTypeInformation(String
cycleType, CycleTypeInformation&

This function returns detailed information on the given cycle
type. This includes the mask for buckets to bunches lookup.

Document: cern-tms/TmsSoftware Page 18 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

Function Description

cycleTypeInformation)

getData(DataInfo dataInfo, Data&
data)

This function returns a set of data from the data present in PUPE
engines memory. The DataInfo object describes the data
required. The call will return the required data along with an
error object indicating success or an error condition as
appropriate. The call will block until data is ready.

requestData(DataInfo dataInfo) This adds a request for some data. The DataInfo object defines
the data required. This request can be made at any time. The call
will return immediately. The system will await the data from a
subsequent processing cycle. When the data is available a
“dataEvent” will be sent to the client. Note that it is not
necessary to use requestData. The client can call getData()
directly although this call will block until the data is actually
ready.

addEventServer(String name) This call adds an event server to call on events such as the
“dataEvent” generated by the requestData() call as well as error
events. The Client will use this to notify the TmsServer of its
local TmsEvent object.

7.1.3. TMS Event Object

This event server object is created by client applications that are interested in getting asynchronous events
from the TMS system. The Client should use the addEventServer() call in order to register the event
server with the TMS system. The TmsEvent object provides the following local calls:

Function Description

errorEvent(in UInt32 cycleNumber, in
Error error)

This event function gets called on a system error. The errorEvent
object contains and error number and string describing the error.
The getStatus() call can be used to fetch further information.

cycleStartEvent(in UInt32
cycleNumber)

This event function gets called on the CYCLE_START event
with the cycle number about to be processed

cycleStopEvent(in UInt32
cycleNumber)

This event function gets called on the CYCLE_END event with
the cycle number completed

dataEvent(in DataInfo dataInfo) This event function gets called when some requested data
becomes available. The DataInfo object contains information on
the data. The getData() call can be used to fetch the actual data.

7.2. TMS Data Client access

Most of the TMS activity will centre on the client applications accessing the data acquired by the TMS
system. The system can support any reasonable number of client applications accessing the TMS data
limited by the overall system bandwidth and the actual amount of data read. The system has storage for
around 10GBytes of real-time data which equates to about 3 seconds of data capture. The client
applications can access this data while it is available in the memory of the PUPE processing engines.

Document: cern-tms/TmsSoftware Page 19 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

There is thus around a 2 second window of opportunity in which to read the data acquired. The TMS is
connected to the client systems by means of a single Gigabit Ethernet interface. The maximum client data
rate is about 62 MBytes per second.

Client applications access the TMS data by using the TmsProcess API object. Each TmsProcess object,
that is connected to the the TMS system, operates over a separate TCP/IP socket interface and has its own
processing thread within the TmsServer process. In addition each TmsControl object is thread safe in
that it is locked while a RPC is taking place. This allows easy use in multi-threaded applications.

An example of a client application reading some data is given in the example code file
tmsDataClient1.cpp. The contents of this file is listed below:

/***
 * TmsDataClient.cpp TMS API example code for a Data Client
 * T.Barnaby, BEAM Ltd, 2007-02-07

 *
 * This is a very basic example of using the TmsApi from a clients perspective.
 * It is designed to give an overview of using the API.
 */
#include <iostream>
#include <stdio.h>
#include <TmsD.h>
#include <TmsC.h>

using namespace Tms;
using namespace std;

// Function to reads some data
BError tmsTest(TmsProcess& tmsProcess){

BError err;
DataInfo dataInfo;
Data data;
UInt32 cn = 0;
BString ct;

// Find out the current cycle number and type
if(err = tmsProcess.getCycleInfo(cn, ct)){

return err.set(1, BString("Error: Getting Cycle Number: ") + err.getString());
}

printf("Getting data for cycles starting at cycle: %u\n", cn);

for(; ; cn++){
// Set data require and wait for data
printf("GetData: Cycle Number: %u\n", cn);
dataInfo.cycleNumber = cn;
dataInfo.channel = 1;

Document: cern-tms/TmsSoftware Page 20 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

dataInfo.cyclePeriod = CyclePeriodHarmonic0;
dataInfo.startTime = 0;
dataInfo.orbitNumber = 0;
dataInfo.bunchNumber = 0;
dataInfo.function = DataFunctionRaw;
dataInfo.argument = 0;
dataInfo.numValues = 1024;
dataInfo.beyondPeriod = 0;

if(err = tmsProcess.getData(dataInfo, data)){
return err.set(1, BString("Error: Getting Data: ") + err.getString());

}
printf("Data: NumValues: %d\n", data.numValues);

}

return err;
}

int main(int argc, char** argv){
BError err;
TmsProcess tmsProcess("//localhost/tmsProcess1");

// Run a normal data gathering cycle as a normal client would.
if(err = tmsTest(tmsProcess)){

cerr << "Error: " << err.getString() << "\n";
return 1;

}

return 0;
}

The TmsProcess object is used for communications with the TMS server. This is connected to the TMS
using the connectService() call. The connectService call takes, as an argument, the host name of the TMS
system and name of the BOAP object to connect to. The BOAP object name has the ring number
appended to it. This is encoded in a URL like format.

Once the TmsProcess object has been successively connected then the client can access the data using the
getData() call. The getData call takes, as an argument, a DataInfo object that defines the data required. In
this simple example the client application first uses the getCycleInfo call to determine the TMS's current
cycle number and then attempts to read as many sets of the same data from the TMS.

The DataInfo object has the following fields:

cycleNumber The PS Cycle number. This defines the TMS cycle number from which to get the data.
If this number is in the future the getData call will block until the data is available. If the
data for this cycle has all ready gone, then the “ErrorDataGone” error will be returned.

channel The pick-up channel number. If this value is given as 0, then the TMS system will
retrieve the data from all of the channels. Note that this could take significant time,

Document: cern-tms/TmsSoftware Page 21 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

especially for large values in numValues, and could result in an “ErrorDataGone” error.

cyclePeriod The cycle period the data is from. Each processing cycle is split up into separate
periods. These periods are: CyclePeriodAll – All of the processing cycle,
CyclePeriodCalibration – The calibration period, CyclePeriodHarmonic0 – The period
after injection to the first harmonic change, CyclePeriodHarmonic1 – the period after
the first harmonic change to the next etc.

startTime The start time in milli-seconds in the cycle period from which to fetch data, starting
from 0.

orbitNumber The starting orbit number, starting from 0. This is applied after the start time parameter.

bunchNumber The Bunch number, starting from 1. If this is set to 0 the the data for all bunches is
returned.

function The data processing function to perform. This defines the type of data to be returned and
any post processing to be performed. Currently there are three values for this:

DataFunctionRaw: This specifies normal raw data as processed by the PUPE
processing.

DataFunctionMean0: This returns average values for all bunches with a 1ms resolution.
The values from all bunches is averaged to a single data value each ms.
DataFunctionMean1: This returns average values for the first bunch with a 1ms
resolution.

Note that the operation of DataFunctionMean0 and DataFunctionMean1 is performed
in the PUPE FPGA and is configured by means of the State/Phase table parameters.

argument The Argument to the data processing function. This is not currently used but is intended
to provide a simple argument to the processing function.

numValues The total number of data points to return

beyondPeriod If set to 1 allows the reading of data beyond the period specified. Note that the number
of bunches captured beyond the end of a cycle period may have changed.

The getData call returns the data in the Data object. This primarily consists of an array of 64 bit values.

The function also returns a BError object. This object defines if the function call was successful or not
with an appropriate error number and error string. The possible errors are listed in the TmsSoftware
document. The most likely errors are listed below:

ErrorCycleNumber The Cycle Number and Type was not updated in-time for this cycle.

ErrorDataNotAvailable The required data is not available. This means that there is no data for the
given cycle number and/or period requested.

ErrorDataGone The required data has already been overwritten by new data. This means the
client was too slow in fetching the data or the TMS system was heavily
loaded and could not supply the data before it had gone from the PUPE data
memory.

ErrorDataFuture The required data is to far into the future. This means that the cycle number
requested is too far into the future.

Document: cern-tms/TmsSoftware Page 22 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

The call returns a “Data” object. This has the following fields:

numValues The total number of data samples in the dataValues array.

dataType The type of data in the data block. Only the types DataTypeRaw and
DataTypeMean are currently supported.

numBunches The number of bunches of data present in dataValues.

numChannels The number of channels of data present in dataValues.

dataValues The data array.

errors Individual errors for each channel within dataValues.

If the channel parameters has been set to 0 to capture data from all of the channels, and an error occurs for
one or more channels, the “getData” call will continue to read data from as many channels as it can. In
this case the call will return the first error that occurred as the function return value. The “errors” array in
the “Data” object will contain the individual channel errors. The Data from any channel that had an error
will be set to 0.

The getData call will check to see if the data for the cycle number requested is still present in the PUPE
memory. The PUPE memory has enough storage for about 3 seconds worth of data (3 processing cycles).
If the data has gone the call will return the error "ErrorDataGone". If the system has not processed the
requested cycle, but will do so within 256 seconds, the call will block awaiting the data.

If the channel number is given as 0 the call will interrogate each of the Pick-Up channels and return the
combined data from all of them. Note that this could take significant time and may not be possible if the
parameter numValues is large. Within the Data structure returned there is an array of error values, one per
channel. If an error occurs on any set of the channels the call will return the first error that occurred and
the complete list of errors in the errors array. The actual data will be returned for all channels that did not
have an error. Those channels that had an error will have data values of 0 returned.

If the bunch number is given as 0, then the system will return the data for all of the bunches.

The data will be returned in the following order, where B - Bunch, C - Channel:
[C1.B1, C1.B2, C1.B3, C1.B4], [C1.B1, C1.B2, C1.B3, C1.B4], ... [C2.B1, C2.B2, C2.B3, C2.B4],
[C2.B1, C2.B2, C2.B3, C2.B4], ...
That is the data is ordered by bunch, then sample, then channel.

See the TMS Software documentation manual for more details of this functions operation.

7.3. The Raw Data

When the DataInfo's function parameters is set to “DataFunctionRaw” the getData call will return the raw
pick-up data. The raw pick-up data is the individual Sigma, DeltaX and DeltaY samples integrated over
one bunches period.

Each individual data item has the following members:

Document: cern-tms/TmsSoftware Page 23 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
https://portal.beam.ltd.uk/support/cern/doc/libTmsApi/html/classTms_1_1Data.html
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

sigma A 16 bit signed value giving the value of Sigma.

deltaX A 16 bit signed value giving the value of DeltaX.

deltaY A 16 bit signed value giving the value of DeltaY.

time A 16 bit unsigned value giving the time in milliseconds from CYCLE_START that the
sample was captured.

7.4. The Mean Data

When the DataInfo's function parameters is set to “DataFunctionMean” or “DataFunctionMeanAll” the
getData call will return the averaged pick-up data. The averaged pick-up data is the sum of individual
Sigma, DeltaX and DeltaY samples over each millisecond period divided by the number of samples.

The “DataFunctionMean” function returns the average data for any particular bunch or the whole set of
bunches if the DataInfo parameter bunchNumber is set to 0.

The “DataFunctionMeanAll” function returns the average of all bunches. That is every bunch's values are
averaged together with every other bunch to give a single set of values.

Each individual data item has the following members:

sigma A 16 bit signed value giving the average value of Sigma.

deltaX A 16 bit signed value giving the average value of DeltaX divided by 256.

deltaY A 16 bit signed value giving the average value of DeltaY divided by 256.

time A 16 bit unsigned value giving the time in milliseconds from CYCLE_START that the
sample was captured.

8. TMS Testing
The TMS system provides a number of features to support testing the system. The main features include:

● The ability to load test Fref,Sigma,DeltaX and DeltaY data into the SDRAM of a PUPE board and
use this as a source for the FREF timing signal and the three ADC input signals.

● The ability to generate the setNextCycle() calls automatically on the CYCLE_STOP event.

● The ability to generate some or all of the TMS timing signals in software to simulate the PS digital
timing inputs.

● A diagnostics capture function so that internal information from the PUPE's FPGA can be
captured. This is useful to check the PLL's operation and for raw ADC data capture.

● The tmsControl and tmsControlGui test programs provide the ability to access the diagnostics
functions from a command line or GUI based application.

● The tmsTestData program uses the TMS testing features to test accessing data from the system.

Document: cern-tms/TmsSoftware Page 24 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

The TmsTesting document provides more information on using the testing functions.

8.1. Using Test Data

The setTestData API call allows the user to configure an individual pick-up channel to run with test data
from the PUPE's TEST SDRAM bank. The call takes an array of 32bit data values to use. Each 32bit data
item has the following structure:

Bits 31:22 21:12 11:1 0
Function X Y  FREF

There has to be an even number of samples sent to the system. Only one set of test data can be used in an
individual PUPE, however each of the 3 PUPE channels can be independently set to use the test data.
Note that the FREF signal will be used as the FREF timing signal for any channel configured to use the
test data source. Care should be used to set the PllPhaseDelay and/or FREF phase in the test data as
appropriate so that FREF and Sigma/DelyaX/DeltaY sources are of the correct phase.

8.2. Software Generation of setNextCycle() calls

The TmsServer programs configuration file, /etc/tmsServer.conf, has a parameter named:
SimulateNextCycle. If this parameter is set to 1 the TmsServer will automatically call the setNextCycle()
function on each CYCLE_STOP event with an incrementing cycle number and the same cycle type.

8.3. Software timing

A TmsPuServer program can be set to drive the Module global TMS timing signals from software. This
can be done by modifying the individual TmsPuServers configuration file parameter: SimulateTiming,
or by using the TMS API's setSimulation or setPupeConfig calls. Normally this is done on a master PUPE
in a rack all of the other PUPE engines in the rack will use the timing signals as supplied from the timing
bus.

The software timing system is able to generate the CYCLE_START, CYCLE_STOP, INJECTION and
one H-CHANGE event in a 1.2 second cycle.

In the setPupeConfig call the SimulateTiming parameter is a bit mask which defines which of the timing
signals should be simulated in software. This can also be set or cleared using the setPupeConfig API call.

It is also possible for an external program to manually operate the timing signals by making use of the
API's setTestMode and setTimingSignals calls.

8.4. Diagnostics Capture

The TMS API and PUPE FPGA firmware, provides the ability to capture diagnostics information from
the FPGA. The diagnostics function has flexible clocking and triggering facilities and the ability to
capture 64bits of data from 4 separate sources. The API's captureDiagnostics function provides the ability.

It takes an input parameter structure that defines the data capture required. This structure has the
following parameters:

Name Description

Document: cern-tms/TmsSoftware Page 25 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

source The source data one of 64bits (0 - 3)

clock The Clock source (0 – 17). See below for settings.

startTime The start time in ms from CYCLE_START before trigger is activated. Note
current FPGA implementation only allows one of startTime or
postTriggerDelay to be used.

postTriggerDelay The delay, in clock cycles, after the trigger before capture starts. Note current
FPGA implementation only allows one of startTime or postTriggerDelay to be
used.

triggerMask The Trigger bit mask. This is the bit mask of the 8 timing signals. See below for
trigger bit settings.

triggerAnd The Trigger function is an AND rather than an OR

triggerStore Store the trigger data in the lower 8 data bits of the 64bit result.

triggerSourceData Use lower 32bits of data as trigger source rather than timing signals

Clock Sources

Number Description

ClkAdcDiv_1 ADC Clock

ClkAdcDiv_2 ADC Clock divided by 2

ClkAdcDiv_5 ADC Clock divided by 5

ClkAdcDiv_10 ADC Clock divided by 10

ClkAdcDiv_20 ADC Clock divided by 20

ClkAdcDiv_50 ADC Clock divided by 50

ClkAdcDiv_100 ADC Clock divided by 100

ClkAdcDiv_200 ADC Clock divided by 200

ClkAdcDiv_500 ADC Clock divided by 500

ClkAdcDiv_1000 ADC Clock divided by 1000

ClkAdcDiv_2000 ADC Clock divided by 2000

ClkAdcDiv_5000 ADC Clock divided by 5000

ClkAdcDiv_10000 ADC Clock divided by 10000

ClkAdcDiv_20000 ADC Clock divided by 20000

ClkAdcDiv_50000 ADC Clock divided by 50000

ClkAdcDiv_100000 ADC Clock divided by 100000

ClkFref FREF

ClkMs 1ms timer

Document: cern-tms/TmsSoftware Page 26 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

Timing Bit Mask

Bit Description

0 10MHz System Clock

1 CYCLE_START

2 CYCLE_STOP

3 CAL_START

4 CAL_STOP

5 INJECTION

6 HCHANGE

7 FREF

See the API documentation for further details on the parameter settings. The source data bits are subject
to change as the diagnostics are developed as required.

The diagnostics data consists of the following signals:

Source Bits Description

0 63:0 Undefined as yet

1 63:0 Undefined as yet

2 63:0 Undefined as yet

3 63:0 Undefined as yet

9. Multiple System Controllers
Two system controllers are provided, one as a backup or backup/development server. There are many
ways to configure the system with two servers, the following briefly describes a possible configuration.

● Two TmsServers: 192.168.100.1 and 192.168.100.2
● Both systems can be setup identically apart from:

● DHCP disabled on second server
● TmsServer disabled on second server
● tmsServer.conf and tmsPuServer.conf files set to use second server.

With this setup the second server can be brought on-line by simply enabling the DHCP service and power
cycling the TMS modules.

The Second Server could be also be configured for development. In this case it would be configured to
manage the spare module with 3 PUPE boards. The second server would supply DHCP information for
spare module controller and the server's tmsServer.conf and tmsPuServer.conf files would be set to use
second server (“TmsServer:” parameter).

Document: cern-tms/TmsSoftware Page 27 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

10. FPGA Bit Files
The system uses the FPGA bit file, named tms-fpga.bit. This is stored, by default, in the /usr/tms/fpga
directory. This bit file is loaded into each PUPE on initialisation by the TmsPuServer program. Normally
this file is provided in the tms-fpga RPM software package.

The FPGA's are loaded with this firmware on boot and whenever the init() TMS API function is called.

11. Further Software Documentation
There are further TMS Software documents available on the CERN TMS Support website at:
https://portal.beam.ltd.uk/support/cern/.

The lower levels of the code are documented using the the DOxygen tool to create class and function level
documentation.

12. Error Handling
There are a number of possible sources for errors to occur while the TMS system is running and a number
of ways of dealing with the errors. All errors that can occur have an error number and an error string.
Errors are reported to the client applications by means of a returned error object and/or the TmsEvent
system. The Following table lists the main system errors that can occur. See the individual API calls for
specific information on errors returned.

Error Description

ErrorOk No Error. This is the status returned when the command completed with no
errors.

ErrorMisc A miscellaneous unclassified error occurred.

ErrorWarning A warning message. No actual error occurred.

ErrorInit An error occurred during initialisation of the system.

ErrorConfig There is an error in the system configuration files.

ErrorParam There was an error in one of the parameters passing in an API call.

ErrorNotImplemented This function has not been implemented.

ErrorComms A communication error occurred.

ErrorCommsTimeout A communications time out occurred.

ErrorMC A Module Controller has an error

ErrorFpga There is an error with a PUPE FPGA board.

ErrorStateTable An error event occurred due to an incorrect FPGA State table transition.

ErrorCycleNumber The Cycle Number and Type was not updated in-time for this cycle.

ErrorDataNotAvailable The required data is not available. This means that there is no data for the
given cycle number and/or period requested.

ErrorDataGone The required data has already been overwritten by new data. This means the
client was too slow in fetching the data of the TMS system was heavily

Document: cern-tms/TmsSoftware Page 28 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
https://portal.beam.ltd.uk/support/cern/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

CERN Trajectory Measurement System

Software Manual

loaded and could not supply the data before it had gone from the PUPE data
memory.

ErrorDataFuture The required data is to far into the future. This means that the cycle number
requested is too far into the future.

13. Software Distribution and Updates
The complete software and documentation for the TMS system is available on DVD and on the Beam
CERN support web site. This includes a full installation package together with individual packages in
RPM format. Complete source code is also available in raw form and through the SVN version control
system.

All of the software is installed on the System Controllers and is packaged as Linux RPM packages. This
enables easy and controlled software updates to the system. It is possible to update the second, spare
System Controller and test the system while the primary System Controller is in use. It is then be possible
to restart the system using the second, spare controller as the master controller.

For more details on this see the TMS Maintenance manual.

Document: cern-tms/TmsSoftware Page 29 of 29
Web: www.alpha-data.com, www.beam.ltd.uk
Email: terry.barnaby@beam.ltd.uk

http://www.alpha-data.com/
mailto:terry.barnaby@beam.ltd.uk
http://www.beam.ltd.uk/

	1. References
	2. Introduction
	3. System Overview
	3.1. Pick-Up Processing Engine (PUPE)
	3.2. Module Controller (MC)
	3.3. System Controller (SC)
	3.4. Client Application’s (CLIENT)

	4. Software Environment and Tools
	5. Operational Overview
	5.1. TMS Cycle Parameters State/Phase Tables
	5.1.1. Cycle Parameter State/Phase Table Configuration
	5.1.2. Cycle Parameter File Format
	5.1.3. Cycle Parameter Configuration
	5.1.4. Cycle Parameter Configuration Notes

	5.2. TMS Data Access

	6. Software Structure
	6.1. File Structure

	7. System API’s
	7.1. System Controller API (TmsApi)
	7.1.1. TMS Control Object (TmsControl)
	7.1.2. TMS Process Control Object (TmsProcess)
	7.1.3. TMS Event Object

	7.2. TMS Data Client access
	7.3. The Raw Data
	7.4. The Mean Data

	8. TMS Testing
	8.1. Using Test Data
	8.2. Software Generation of setNextCycle() calls
	8.3. Software timing
	8.4. Diagnostics Capture

	9. Multiple System Controllers
	10. FPGA Bit Files
	11. Further Software Documentation
	12. Error Handling
	13. Software Distribution and Updates

