
BEAM
Beamlib API Manual

Project Beamlib

Date 2022-12-01

Version 3.0.0

Reference BeamlibApiManual

Author Dr Terry Barnaby

Table of Contents
1. Introduction...1
2. Installation...2
3. Naming Convention and Style.. 3
4. Simple Example.. 3
5. Fundamental Types... 3

5.1. BString..4
5.2. BError..4
5.3. BList.. 5
5.4. BArray...6
5.5. BDict... 7
5.6. BDictMap.. 7
5.7. BComplex..7

6. Multi Threaded Functions...7
7. File Access.. 8
8. Communications... 8
9. Time.. 8
10. Data... 8
11. System...9
12. Debug.. 9
13. Misc...9
14. BOAP Name Server.. 9
15. BIDL: Beam Interface Definition Language..10
16. Copyright and License.. 10

1. Introduction
The Beam Beamlib class library provides system portable low level classes for the manipulation of
strings, lists arrays as well as system independent network sockets etc. It is documented in: BeamlibApi
reference documentation.

It is based on Beam’s internal Beam-lib library that was initially started in the late 1980’s to add
Smalltalk like constructions/components to the emerging C++ language for use within Beam for real-time
data processing and embedded system uses. Over the years it has been extended as needed to support
wildly differing projects.

This new Beamlib library is based on the Beam-lib library but has been reduced to the core generally used
classes, with many proprietary classes and functions removed. Also the documentation system has been
updated together with more documentation on the library. The first iteration of the Beamlib library
matches the API of the earlier library to simplify porting existing code. However we intend to clean up
the API for a future version as there is a lot of functions in the library that can be removed and the API
could do with a tidy with modern C++ compiler abilities and a cleaner API.

Page 1 of 10 Beamlib API Beam Ltd

BEAM
The Beamlib library has been ported to various Linux based targets as well as Microsoft Windows. There
is also a variant of it called Armsys that is available for Microcontrollers.

Most class member functions and generic library functions return a BError object to indicate the status of
the function call. The BError object has an integer error number value and a string describing the error.
When the error number is 0 this indicates all was ok. Positive error numbers indicate an API level error
has occurred. Negative error numbers are from the underlying Linux system. Seet the section on errors for
more detail.

The BString class is used extensively to efficiently store variable length ASCII strings. BStrings can be
appended and compared easily and have a great deal of additional functionality. The C++ operators are
overridden to provide this functionality and to return the BString as a “const char*” for functions that
require a traditional ‘C’ string. The BString class has a BString::str() method that will return its internal
string as a “const char*” for printf() calls or for other uses that require this.

The Beamlib library provides integer and floating point types such as BInt32, BUInt16, BFloat64 that are
based on the appropriate lower level ‘C’ type. These have a fixed memory size to allow easy passing over
communication interfaces and uses the CamelCase naming scheme so that basic type names can match
this naming scheme.

The core Beamlib C++ classes are:

Class Description

BString A variable length string class used for storing, passing and manipulating ASCII
text strings. This uses shared and referenced malloced data strings for efficiency.

BError Most functions return a BError object to provide the status of the functions
operation. A BError object has a number and a string. The error numbers are
listed in the API with 0 indicating Ok. The string is a human readable error
message.

BList<Type> This is a generic doubly linked list object that can be typed to store any other C++
object.

BArray<Type> This is a generic contiguous memory array object that can be typed to store any
other C++ object.

BDict<Type> This is a dictionary object that can be typed to store any object indexed by a
string.

BTimeStamp A date/time to microsecond resolution

BUInt32, BInt32 ... General low level integer and floating point types.

2. Installation
The Beamlib class library can be installed from the following RPM packages:

• beamlib-lib: Runtime shared libraries.

• beamlib-utils: Runtime tools.

• beamlib-devel: Development include files and shared and static libraries.

• beamlib-doc: Documentation.

If the BOAP name server is needed for applications that use the BOAP RPC system, then the Boap name
server can be started using the command: “systemctl start beamlib-boapns” and set to start at boot with
the command “systemctl enable beamlib-boapns”.

Page 2 of 10 Beamlib API Beam Ltd

BEAM
3. Naming Convention and Style
Beamlib uses a CamelCase naming scheme with the first character in uppercase when types/classes or
constants are named and lower case for variables and function names. All of the type/class definitions are
prefixed with the upper case letter “B”.

The Beamlib library uses only the basic C+_+ language features and although it supports operator
overloading for some classes, where it obviously makes sense, most functionality is provided by class
member funcions.

4. Simple Example
A simple example of using the library is below showing the Beamlib style:

#include <BError.h>

BError func1(BString name, BString& nameRet){
BError err;

if(name[0] == ‘A’)
err.set(ErrorMisc, “Cannot handle strings starting with A”);

else
nameRet = name.subString(1, -1);

return err;
}

int main(){
BError err;
BString name = “Hi there”;

if(err = func1(name))
printf(“Error: %d, %s\n”, err.num(), err.str());

return 0;
}

5. Fundamental Types
Beamlib defines some fundamental types that can be used in programs. In C== standard types such as an
“int” can store a different number of bits depending on the architecture and compilers used. As Beamlib
targets embedded systems as will as larger desktop systems having known size variables is more reliable.
The Types also use a CamelCase naming scheme with the first character in uppercase when types/classes
or constants are named.

The fundamental types are defined in BTypes.h and include:

BInt8 8 bit signed integer

BInt16 16 bit signed integer

BInt32 32 bit signed integer

BInt64 64 bit signed integer

BUInt8 8 bit unsigned integer

BUInt16 16 bit unsigned integer

BUInt32 32 bit unsigned integer

Page 3 of 10 Beamlib API Beam Ltd

BEAM
BUInt64 64 bit unsigned integer

BFloat32 32 bit floating point

BFloat64 64 bit floating point

5.1. BString

The BString class is one of the core Beamlib types that is used extensively in the library. The BString
class is designed for the storage and manipulation of variable length ASCII strings. It uses the BRefData
class to store the null terminated strings in shared and references counted shared memory areas on the
heap. This efficient method reduces memory allocation, deallocation and copying. Copying or just
passing a string in and out of a function becomes a simple pointer copy with the string data reference
count incremented.

A BString is designed for simple ASCII text but can store UTF8 encoded characters as well with
restrictions. The main restriction is that the character positional access with the get() and [] operator
functions just return the 8 bit byte that may be part of a multi-byte UTF8 “character”.

You can convert a BStirng to a const char* using the BString::str() method. You can create a BString
from a char* with its constructor BString(const char*) which is used implicitly for conversions. The
BString also supports conversion to and from Qt QStrings if the Qt headers are included before the
BString.h header. The BString also supports input and output from std::iostream objects.

As well as its constructor function, BString supports a number of explicity convert() functions that can
convert basic types such as integers to a BString. There are also some ret*() functions to parse the BString
for integer and floating point values.

The operators: =, +, +=, <, >, >=, <=, ==, != operate as you would expect with the +" appending strings.

There are a number of string manipulation functions that are provided.

There are also some overloaded conversion functions with the names: toBString() and fromBString() for
use in conversion of data types to and from strings.

5.2. BError

Most class member functions and generic library functions return a BError object to indicate the status of
the function call. The BError object has an integer error number value and a string describing the error.
When the error number is 0 this indicates all was ok which makes it easy for software “if” statements to
use. Positive error numbers indicate an API level error has occurred. Negative error numbers are from the
underlying Linux system. There is a generic error ErrorMisc = 1 which is used for a generic error and
ErrorWarning = 2 which is used for something that is often just a warning rather than an error. In all cases
the ASCII string, that is part of the BError object, describes the error in more detail.

There are 4 sets of error number ranges:

• 0 – 63: Standard Beamlib error numbers.

• 64 – 127: User program errors

• < 0 Negative: Underlying OS errors

If you need to generate an error you can add your own error numbers starting at ErrorAppBase (64) or
simply use the error number ErrorMisc (1) with an appropriate string describing the error.

The Beamlib library does not use C++ exceptions, preferring to always return errors up the function chain
to be handled near the point of the error in the code. However if desired the BError can be raised as an

Page 4 of 10 Beamlib API Beam Ltd

BEAM
exception from user code.

Standard Beamlib API level error numbers are defined in the BError.h file and are as follows:

ErrorOk 0 The function ran fine.

ErrorMisc 1 A generic error occurred. Look at the string for more information

ErrorWarning 2 A generic warning occurred. Look at the string for more
information

ErrorParam 3 A function parameter was incorrect, possibly out of range

ErrorTimeout 4 A time-out occurred

ErrorNotAvailable 5 A resource is not available

ErrorData 6 Some data related error like a data format or corruption error

ErrorChecksum 7 A checksum error

ErrorOverrun 8 A data buffer/queue has overrun, perhaps the system can’t keep up
with the data rate

ErrorUnderrun 9 A data buffer/queue has underrun, perhaps the data source is not
sending data fast enough

ErrorInit 10 Initialisation error

ErrorConfig 11 Configuration error

ErrorNotImplemented 12 The function has not been implemented

ErrorResourceLimit 13 A resource limit has been reached

ErrorEndOfFile 14 The end of a file has been reached

ErrorFile 15 A file read or write error

ErrorFormat 16 A data format error

ErrorComms 17 A generic communications error

ErrorAccessDenied 18 Permissions for access deny this operation

ErrorNoData 19 There is no data available

ErrorEndOfData 20 The end of data has been reached in a file or stream

ErrorDataPresent 21 Data is already present when trying to add new data

ErrorDataTruncated 22 Data is truncated, ie. not of the expected length/size

ErrorApiVersion 23 The API version does not match

For the negative system errors, refer to the linux standard error documentation. The error numbers will
match the standard errno.h values but as negative numbers.

5.3. BList

The BList class is a simple doubly linked list of objects. It is used to store an ordered list of any type/class
of objects. The class provides a simple iteration system, using a BIter class, to allow easy navigation
through the list. The BIter is really just a pointer to one of the lists entries and holds state on the current
location. You can set a BIter’s position using the start(BIter&), end(BIter&) and similar functions. You
can access objects stored in the list with the get(BIter) function or the operator[BIter] operator. The BIter

Page 5 of 10 Beamlib API Beam Ltd

BEAM
can point off the beginning or end of the list. In this case the isEnd(BIter) function will return true.

The list entry access functions return a reference to the chosen item. If the list is a non const list this
allows the item to be modified if needed.

The list supports stack functions push() and pop() and queueing functions such as queueAdd() and
queueGet().

There is a macro BListLoop(list, iterator) that provides a concise way to iterate over a lists objects.

A example of its use is:

typedef BList<BUInt> UIntList;

UIntList funca(UIntList& list1){
UIntList list2; // A list of unsigned integers
BIter i1; // Iterator for the list

printf(“There are %u items in the list\n”, list1.number());

// Walk over the list
for(list1.start(i1); !list1.isEnd(i1); list1.next(i)){

list2.append(list1[i1] * list1[i1]);
}

// Alternative Walk over the list
BListLoop(list1, i2){

list2.append(list1[i2] * list1[i2]);
}

return list2;
}

It is also possible to use an integer as an iterator like:

// Walk over the list
for(int i = 0; i < list1.number(); i++){

list2.append(list1[i] * list1[i]);
}

However this is inefficient as the BList will need to walk through the list to find entry. A BArray is more
efficient if an integer iterator is needed.

The BList has a sort() function. By default this will use the stored objects operator>() function to compare
the lists stored objects. However it is also possible to provide the BList with a function to be called to
compare the stored objects.

int sort1(Person& p1, Person& p2){
return p1.name > p2.name;

}
list1.sort(sort1);

5.4. BArray

The BArray class is a simple, contiguous in memory, list of objects. It is used to store an ordered list of
any type/class of objects and you can use a simple integer as an iterator. The current implementation is
based on the Standard C++ library vector class and has all of the functionality of that class.

typedef BArray<BUInt> UIntArray;

Page 6 of 10 Beamlib API Beam Ltd

BEAM

// Walk over the array
UIntArray array1;

for(int i = 0; i < array1.number(); i++){
array2.append(array1[i] * array1[i]);

}

5.5. BDict

This is a dictionary list class that uses a string as an index. For efficiency it uses a hashed string system to
speed up access. It is derived from a BLIst xclass and so has all of the functionality of that class as well as
the ability to access elements with a string key. An example is:

typedef BDict<BString> StringDict;
StringDict dict;
dict[“Item1”] = “This is item1”;
dict[“Item2”] = “This is item2”;

printf(“Items2 is: %s\n”, dict[“Item2”].str());

5.6. BDictMap

A mapped Dictionary class. This is based on the Standard C++ library map class and has all of the
functionality of that class.

5.7. BComplex

The BComplex class along with the BComplex32 and BComplex64 classes are used to implement
complex numbers. They are based on the Standard C++ library complex class and has all of the
functionality of that class.

6. Multi Threaded Functions
The Beamlib library provides a set of classes to assist with multi-threaded programming. These include:

• BMutex: Provides a data section lock against other threads.

• BSemaphore: Provides boolean and counting semaphores for inter-thread communication.

• BSema: Provides an alternative style boolean and counting semaphores for inter-thread
communication.

• BRWLock: Provides a read/write thread lock

• BAtomicCount: Provides an atomic integer counter

• BAtomic: Provides variable sized atomic integer counters

• BQueue: Provides a thread save queue of objects that can be used to communicate between
threads.

• BThread: Implements a thread of execution.

• BTask: Alternative thread of execution class

• BStringLocked: Provides a basic thread locked string.

• BCond: Provides a thread safe conditional variable

• BCondInit: Provides boolean and integer thread safe variables

Page 7 of 10 Beamlib API Beam Ltd

BEAM
• BEvent: Event handling with an event description object and an implementation using OS pipes

and BQueues.

• BEvent1: An alternative more generic event handling set of classes

7. File Access
• BDir: File system directory class.

• BFile: File system file access class.

• BConfig: Simple file based Configuration storage class.

8. Communications
• BSocket: Implements a network socket communications class and TCP/IP V4 addressing schemes

• BPoll: Poll a set of file descriptors for events

• Boap: A set of classes that implement an object orientated RPC communications system.
Normally used in conjunction with the bidl IDL API compiler.

• BoapMc: A simpler Boap communication system for small microprocessors

• BoapMc1: A new but sill simple Boap communication system for small microprocessors

• BoapSimple: Old Boap communications class. Depreciated

• BComms: A base class for communications classes having a generic API.

• BEndian: A set of efficient inline functions to handle architecture endian conversion

9. Time
• BDate: The BDate class stores a calendar date wit a year and day in the year components. It

provides functions to set this date from a string and convert the data to a string as well as BDate
comparison functions.

• BDuration: Stores and manipulates a time to the nearest microsecond and a maximum of 24 hours

• BErrorTime: Error return class with time field. This provides an alternative to the standard BError
return type for errors but includes BTimeStamp information.

• BTime: Implements a simple date/time class. Stores the date/time as a number of seconds since
Unix epoch 1970-01-02T00:00:00.

• BTimeStamp: A date and time storage class with microsecond resolution.

• BTimeStampMs: A date and time storage class with milisecond resolution and an extra field to
indicate a particular sampleNumber it refers to

• BTimeUs: Time storage as an unsigned 64bit value to TAI time standard.

• BTimer: Stopwatch style timer

10. Data
• BObj: A generic object base class that has runtime definable data fields

• BObjStringFormat: A set of functions to perform object to string and string to object for standard
types and generic BObj classes.

• BFifo: A template first in first out data buffer to store any object types

Page 8 of 10 Beamlib API Beam Ltd

BEAM
• BFifoCirc: This class implements a thread safe FIFO buffer using a binary sized circular memory

• BFileCsv: A class to read and write CSV formatted files.

• BFileData: A class to implement a data storage file

• BMysql: A class to provide access to a MySQL database

• BNameValue: A simple, templated, name/value pair.

• BNameValueList: A simple, templated, name/value pair list.

11. System
• BFirmware: BEAM firmware file format structures

• BRtc: Access to the systems real time battery backed up time hardware

• BRtcThreaded: A thread safe class to access to the systems real time battery backed up time
hardware

• BSpi: BSpi class for accessing SPI hardware devices

• BSys: Some Armsys system definitions to provide compatibility with Armsys

12. Debug
• BDebug: Software debug functions.

13. Misc
• BEntry: A simple name/value string pair

• BEntryList: A list of string name/value pairs

• BEntryFile: A file based list of string name/value pairs

• BBuffer: Create and manipulate a variable sized byte data buffer.

• BBufferStore: Create and manipulate a variable sized byte data buffer. Has functions to store and
retrieve basic and extended types/classes in the binary buffer.

• BCrc16: A 16bit CRC generator

• BCrc32: A 32bit CRC generator

• BRefData: A pointer to a variable sized data area with reference counting so the data areas can be
shared.

• BTable: A simple string based table structure

• BUrl: Access to a Url

14. BOAP Name Server
The Beamlib class library includes a BOAP object name server program, beamlib-boapns. This listens on
the network socket named “boapns” which by default is set at 12000. BOAP server programs can
advertise there RPC server objects via this name server and clients can find available RPC objects from it.

The beamlib-boapns will return the TCP/IP address and the socket number of the appropriate server
program for the named object.

Page 9 of 10 Beamlib API Beam Ltd

BEAM
15. BIDL: Beam Interface Definition Language
Beamlib includes a interface definition language compiler named beamlib-bidl. This compiler accepts an
interface definition file written using a C++ like syntax to define a RPC object API.

The bidl file allows classes to be defined from a set of standard Beamlib primitive types and provides a
mechanism to define RPC server objects with member functions that can pass objects of these defined
classes.

The beamlin-bidl compiler will generate the necessary C++ header and implementation files for both the
server and clients to implement this RPC API.

As well as being able to generate a C++ implementation of the API, it can also generate implementations
for other languages or provide helper code for these language implementations.

An example bidl file looks like:

module Api1 {
apiVersion = 5;

/// Priority levels
enum Priority { PriorityLow, PriorityNormal, PriorityHigh };

class Person {
String name;
UInt age;
List<String> friends;

};

interface PeopleApi {
Error getPerson(in String name, out Person person);
Error addPerson(in Person person);

};
};

16. Copyright and License
Beam Ltd holds the copyright of the Beamlib library. We provide it under the GNU GPLv3 General
Public License version 3.0 open source licence for use by others, see LICENSE_GPLv3.txt in the
documentation or source code tree.

For projects Beam Ltd is involved in with our clients and for commercial use the software is available
under other licenses including the LGPL license. Contact Beam Ltd for details.

Page 10 of 10 Beamlib API Beam Ltd

	1. Introduction
	2. Installation
	3. Naming Convention and Style
	4. Simple Example
	5. Fundamental Types
	5.1. BString
	5.2. BError
	5.3. BList
	5.4. BArray
	5.5. BDict
	5.6. BDictMap
	5.7. BComplex

	6. Multi Threaded Functions
	7. File Access
	8. Communications
	9. Time
	10. Data
	11. System
	12. Debug
	13. Misc
	14. BOAP Name Server
	15. BIDL: Beam Interface Definition Language
	16. Copyright and License

