
BEAM

Blacknest BDS Data File Format

Preliminary – Live Document
Project BDS

Date 2018-01-30

Reference BdsDataFile

BDS File Format Version 1.2.0 (Initial format 1.1.0)

Author Dr Terry Barnaby

Table of Contents

1. Introduction...1
2. Features...2
3. Overview...2
4. Time Stamp...3
5. Info Packets...3
6. Data Packets..4
7. Standard Info Packet Entries...5
8. File Blocks..6
9. Appending Data...6
10. Notes...6

1. Introduction

Seismic sensor data is stored and transferred in a number of different formats. In order to make the BDS
system as simple and flexible to use as possible the BDS system stores all data in its own internal format,
BDS. This format has been designed so that it can encapsulate all of the information from external data
formats. It is an internal format not intended for external use. This allows it to be easily modified and
extended as required to support other external data formats or for system requirements.

Note that although all data file formats will store the seismic sensor data samples, most will not store all
of the additional meta data information such as instrument responses, locations etc. The BDS data format
can store the Meta data as well as the seismic sensor sample data. However, it is expected that only basic
Meta data will be included in the BDS data files for consistency checking purposes. The BDS system
stores the Meta Data in a database. A user or data program will need the seismic sensor data and the meta
data information. The BDS API provides both the Meta data and the seismic sensor data.

In order to simplify data file access and allow the easy creation of data converters the BDS system has a
data file access API. This API provides a simple, common access to seismic data files of any format
including the BDS Data file format.

BEAM Confidential Information Page: 1 of 7

BEAM
This document describes the BDS Data File format that stores the seismic data. It is like SEED in some
respects but the MetaData system is simpler and more flexible and the API is much simpler.

2. Features

• Keeps original data samples intact. No interpolation of original data sample values.
• Keeps original time stamps and block sizes intact.
• File and streaming support.
• In a file, fixed sized block based to allow for easy/quick search for data blocks over a particular

time period.
• Variable sized packets to allow for varying number of samples per block, different data types and

compression schemes.
• Free format ASCII MetaData attributes. This allows any set of MetaData to be stored in the file.
• Multiple streamlet support. Each streamlet can contain one or more channels.
• Data channels can be multiplexed at the channel level or sample level.
• Able to support synchronously or asynchronously sampled multiplexed data channels.
• Access to data while files are being created. Useful for real-time data access.
• "Canadian compression" support.
• 16bit integer, 32bit integer and 32bit floating point sample format support. (Could be easily

extended).
• Simple API to read/write file files.
• Checksum on the packet level.
• Sequence numbers so that missing packets can be identified.
• Easily extendible for future requirements.
• Time stamps at microsecond accuracy.
• Can store blocked and timestamped ASCII log data
• Ability to append data to existing files for use when streaming data into day files with backfill.

3. Overview

A data file or stream consists of a number of variable length packets of data. There can be a number of
different packet types. At the moment just Info, InfoExtra and Data packets are defined. In the case of a
file these packets are stored in fixed sized blocks, by default 64KBytes, to allow easy searching for data
for a particular period. In a stream the bare packets are sent.
There is the concept of a streamlet and a sequence number within the streamlet. This allows multiple
streamlets of data to be encapsulated within the file. Normally each data channel is stored in a separate
streamlet although sample-multiplexed sets of data channels can be stored within one streamlet.
The Data packet size can be made the same as or a multiple of the original data's block size to
synchronise time stamps if required. Larger packet sizes will improve compression efficiency and speed
up data searching and access. All binary data is in little-endian format and can be readily converted to big-
endian format.

All Packets have the following binary header:

Item Type Description

type UInt32 The type of this packet

length UInt32 The length of the packet in bytes

BEAM Confidential Information Page: 2 of 7

BEAM
streamlet UInt32 The streamlet number of this packet

sequence UInt32 The stream packet sequence number

checkSum UInt32 Block checksum (header and data - checksum field)

startTime TimeStamp The start time. At microsecond accuracy

endTime TimeStamp The end time. At microsecond accuracy

Info Packets are interleaved with the Data packets and can be repeated at intervals so that the BdsData
can be used in a streaming system. The channel data blocks can be grouped together so that the data for a
set of channels over a particular time period could be easily retrieved. When Meta Data changes a new set
of Info blocks would be sent for the new time period.

Two main forms of the BDS data file format have so far been defined: BDS-SM and BDS-CM. BDS-SM
is a sample multiplexed format. In this case all the channels samples are multiplexed together into blocks
of data. The samples have to be synchronously sampled in order for this to work. BDS-CM is a channel
multiplexed format. In this case each channels samples are separately stored in individual blocks of data.

4. Time Stamp

The time stamp consists of the following fields:

Item Type Description

year UInt16 The year

yearDay UInt16 The day of the year

hour UInt8 The hour

minute UInt8 The minute

second UInt8 The second

spare UInt8 Spare padding entry

microSecond UInt32 The microsecond field

A Time Stamp with the year set to 0 means undefined.

5. Info Packets

An Info or InfoExtra Packet would have the following format:

Item Type Description

type UInt32 The type of this packet

length UInt32 The length of the packet in bytes

streamlet UInt32 The streamlet number of this packet

sequence UInt32 The stream packet sequence number

checkSum UInt32 Block checksum (header and data - checksum field)

startTime TimeStamp The start time. At microsecond accuracy

endTime TimeStamp The end time. At microsecond accuracy

BEAM Confidential Information Page: 3 of 7

BEAM
numItems UInt32 The number of items

items[] Item A list of items

Normally Info packets are stored in streamlet 0.

Each item has the following format:

Item Type Description

nameLen UInt32 The length of this entry

nameStr[] UInt8 The Item's name in null terminated ASCII

valueLen UInt32 The length of the value field

valueStr[] UInt8 The Item's value in null terninated ASCII

The "itemName" field has a hierarchal naming scheme using the "." character as a separator. Arrays of
items uses the "[n]" format.
(Note: We could have a type field here so that binary data, such as pole/zero frequency responses, could
be stored in binary form.)
InfoExtra packets are designed for additional MetaData such as error lists that could be large and would
not normally be needed when accessing data.

6. Data Packets

A Data packet has the following format:

Item Type Description

type UInt32 The type of this packet

length UInt32 The length of the packet in bytes

streamlet UInt32 The streamlet number of this packet

sequence UInt32 The stream packet sequence number

checkSum UInt32 Block checksum (header and data - checksum field)

startTime TimeStamp The start time. At microsecond accuracy

endTime TimeStamp The end time. At microsecond accuracy

numChannels UInt32 The number of channels

numSamples UInt32 The number of samples

channelNum UInt32 The number of the first channel within this data block

segmentNumber UInt32 The segment number of this data block

packFormat UInt8
The Sample packaging format: Sample Multiplexed, Channel
Multiplexed Canadian Compression

sampleFormat UInt8 The sample format: Int16, Int32, Float32

info
Name/Value
pairs

Packet Meta Data

data[] UInt8 The raw data

BEAM Confidential Information Page: 4 of 7

BEAM

Either a single channels data or data for multiple, synchronously sampled, channels can be stored in this
packet.
The raw samples can be of several different sample formats including: Int16, Int32 and Float32. The data
can be compressed using a number of methods although we will only support Canadian initially. The
number of samples per data packet could be set at the same or a multiple of the original data's block size
to eliminate issues with time stamp interpolation.
The Info field is use to store data block based meta data. This is used to store ASCII LOG data in the
"log" field. It is also used for the TapeDigitiser data which has information such as the FM Signal levels
for each channel. The format of the info field is a list of name/value pairs in ASCII. The binary
representation is as follows:

Item Type Description

number UInt32 The number of following name/value pairs

nameLen UInt32 Length of the following name string

nameStr[] UInt8 The ASCII name field, null terminated

valueLen UInt32 Length of the following value string

valueStr[] UInt8 The ASCII name field, null terminated

... The next Name/Value pair ...

The structure of the data in the packet depends on the format.
For non compressed data it consists of a simple two dimensional array of data. The first dimension is the
channel number the second is the sample number. Thus each channels set of data is contiguous.

7. Standard Info Packet Entries

Although the Info Data is free format ASCII, there are some standard definitions. The following shows
some examples of these.
The full set of definitions are defined in the BdsMetaData document.

Item Name Description

bds.version The BDS File Version

bds.format The BDS format (BDS-SM or BDS-CM)

startTime The start time of the following data.

endTime The end time if a file format (not in streamed data)

array The Array the data is from if only from a single array

description Some description

channels.number The number of channels

channels.synchronous A boolean defining if the channels are synchronously sampled

channel1.startTime The start time

channel1.endTime The end time

BEAM Confidential Information Page: 5 of 7

BEAM
channel1.network The network the data is from

channel1.station The station the data is from

channel1.channel The channels identifier name

channel1.source The data source, "Master" is the normal.

channel1.type The channels type (BHZ etc)

channel1.auxId The auxillary or loaction ID.

channel1.sampleRate The channels sample rate

channel1.sampleFormat The sample format Int16, Int32, Float32 etc

channel1.streamlet
The streamlet this channels data is in. (Multiple channels will share a streamlet
in Sample Multiplexed mode)

8. File Blocks

The BDS Data Packets would be stored within fixed sized blocks in a file for quick and easy random
access to the data. A BDS Data block has the following format:

Item Type Description

type UInt32 The type of this block (Magic number)

length UInt32 The length of the complete block in bytes

packetOffset UInt32 The offset in bytes to the next packet header within the block

data[] The raw packet data

9. Appending Data

The file data is quantised into blocks of a fixed length (default 64 kBytes). Each block contains multiple
packets of information and data. The last packet written in a file write or append session will have a
packet type of 0. The first packet written when a file is created or appended to will be an information
packet. This will contain the channel to streamlet mapping amongst other information.

A BDS format data file can be opened in append module (“a+”). You can only append data to channels the
file was originally created for as setup by the setInfo() API call. If you try and append other channels, the
setInfo() call for this will fail.

When data is appended to a BDS file it is added into a new packet following the previously last packet in
the file. The data added must be for the same data channels (Network:Station:Channel:Source) as defined
in the files first info packet. The first new packet added will be an info packet matching the files main
info packet. The time order of data blocks is unimportant as sorting is automatically performed when the
file is read.

10. Notes

1. The Info Packet facility could provide the ability to include all of the Seismic Meta Data for the
period in question, if required, including instrument responses etc.

2. Canadian Compression not fully implemented or tested. The code is in here as an example.
3. When creating sample-multiplexed data we compress each channel independently and then store

BEAM Confidential Information Page: 6 of 7

BEAM
the compressed blocks within the one packet.

4. Can only handle one CM channel or one set of SM channels. The streamlet allocation is hard-
coded to the data channel number for writes.

5. Currently allows data to completely overlap in time when appending to the file.

BEAM Confidential Information Page: 7 of 7

	1. Introduction
	2. Features
	3. Overview
	4. Time Stamp
	5. Info Packets
	6. Data Packets
	7. Standard Info Packet Entries
	8. File Blocks
	9. Appending Data
	10. Notes

