

BDS Software Development

● BDS - Blacknest Data System
● System to store and recover seismic sensor

data together with Meta data.
● Provide an introduction to programming in the

BDS environment
● Requires 'C' and 'C++' development knowledge

BDS Overall Design

Email Interface Web Interface

Web Admin
Interface

BDSE
Data Engine

Data Converters

Database

Other
Archive

Configuration
and admin tools

Logging
 and Statistics

Data Access
Methods and
 Data Cache

BDS Data API, Socket Interface

BDS Overall Design

Disk
Archive

Satellite
Data Input

Web Interface
User

Programs

BDS Admin API
Socket Interface

BDS DataAdd API
Socket Interface

BDS Software areas

We will cover:
● C++ Programming
● Client Software
● Scripts
● Data Converters
● Server Development
● API modifications

Programming Languages

● C++ is the primary development language
● Unix shell (BASH) used for basic scripts
● Python is used in some of our test programs
● PHP is used in the example web client
● BDS API can be ported to other languages

C++ Programming
● Based on the 'C' language
● Has Object Orientated extensions
● Other extensions including:

Templates,References,Default Arguments,
Variable hiding,Read Only, Name Spaces,
Stricter compiler

● If used in a good Object Orientated style code
can be written at a higher level of abstraction
and more closely match the problem domain
and hence be easier to understand.

● If used badly can easily create unmanaged
code.

C++: Classes and Objects

● Description of a new type
● Can be low level types such as Complex,

String, List or higher level such as BdsChannel
● “struct” like semantics with list of member

functions. (Has data and function members)
● Class declaration (Interface) in header .h file
● Class definition (Implementation) in .cpp file

C++ Complex number class Definition
class Complex {
public:

Complex(double real = 0.0, double imag = 0.0);

void setReal(double real);
void setImag(double imag);

double getReal();
double getImag();
double abs();

Complex operator+(Complex c);
Complex operator*(Complex c);

private:
double oreal;
double oimag;

};

Complex c1, c2(3.0, -4.1);

c1 = c1 * c2;
printf(“Complex: %f, %f\n”, c1..getReal(), c1.getImag());

C++ Complex Class Implementation
Complex::Complex(double real, double imag){

oreal = real;
oimag = imag;

}

double Complex::getReal(){
return oreal;

}

void Complex::setReal(double real){
oreal = real;

}

Complex Complex::operator+(Complex c){
Complex r;

r.oreal = oreal + c.oreal;
r.imag = oimag + c.oimag;
return r;

}

References and const
Complex operator+(Complex c){

r. oreal = oreal + c.oreal;
}

Complex operator+(Complex* c){
r. oreal = oreal + c->oreal;

}

Complex operator+(Complex& c){
r. oreal = oreal + c.oreal;

}

Complex operator+(const Complex& c){
r. oreal = oreal + c.oreal;

}

Complex operator+(const Complex& c) const {
r. oreal = oreal + c.oreal;

}

BEAM Class Library

● C++ is used in an Object Orientated Style
● The BEAM class library is used for basic types

such as:
● Strings, Lists, Arrays, BOAP RPC, Threads and

Locking, Network I/O, Database I/O, Debug
● Avoidance of pointers at higher level interfaces
● Uses CamelCase naming convention. Upper

case first letter for types and constants. Lower
case first letter for functions and parameters.

Beam Class Library: Strings

● Variable length on heap

● Efficient shared reference counted string

BString s1;

BString s2;

s1 = s1 + s2;

if((s1 == s2) || (s1 > s2)){

}

s1 = s2.subString(0, 3);

s1 = stringToUppercase(s2);

cout << s1 << “\n”;

printf(“%s\n”, s1.retStr());

Beam Class Library: Arrays

BArray<BString> a;

a.setSize(64);

a[32] = “Hello”;

for(int i = 0; i < a.size(); i++){

printf(“Position: %d Value: %s\n”, i, a[i].retStr());

}

a = functionAppend(a, a);

References:

BArray<BString> functionAppend(BArray<BString>& a1, Barray<BString>& a2);

Beam Class Library: Lists

BList<int> l;

BIter i;

l.append(1);

l.append(2);

for(l.start(i); !l.isEnd(i); l.next(i)){

printf(“Value: %d\n”, l[i]);

}

Beam Class Library: Error

● BError class is used to return errors from
functions.

● BError has an error number and a string.
● Can be used in “if” statements and passed back

up the calling function tree.
● Can be passed through exceptions.

BError err;

if(err = func()){

cerr << “Error: “ << err.getString() << “\n”;

}

BOAP

● Beam Object Access Protocol
● Provides simple to use object RPC mechanism
● Uses an IDL language “compiled” with bidl.
● Produces a 'C++' Client and Server side API

library.
● Can produce API libraries for other languages

BOAP: Example IDL

module Bds {
apiVersion = 4;
enum Errors { ErrorOk, ErrorMisc, ErrorWarning };

class Point {
Float64 x;
Float64 y;

};

interface AdminAccess {
Error connect(in String user, in String password);
Error setUser(in String user, in String email);
Error setUserReal();
Error getVersion(out String version);

};
};

BOAP: Example Client Use
DataAccess bds;
BError err;
BString version;

if(err = bds.connectService("//hostName/bdsDataAccess")){
// Some error handling

}

if(err = bds.connect("test", "beam00")){
// Some error handling

}

if(err = bds.getversion(version)){
// Some error handling

}
cout << “Version: “ << version << “\n”;

BDS Development Libraries

● BdsLib: Main BDS API library. Primarily the BDS, BOAP based,
API with some additional helper functions. “BDS” name space.

● BdsDataLib: BDS data access library. Includes seismic data
converters. “BDS” name space.

● TapeDigitiser: Library from Tape digitiser project.

● BeamDsp: BEAM Digital Signal Processing library for
TapeDigitiser import.

● Gcf: Standard GCF library

BDS Make environment

● The BDS build system uses a simple “Makefile” based system.

● There is a master “Makefile.config” file at the root of the
software development tree that defines the standard build
parameters.

● Each directory has its own Makefile to build its code that
includes the Makefile.config. Tree of Makefiles

● The main make targets are:

● all: The default to build the code
● install: To build and install the code (DESTDIR is destination)
● clean: To clean the code
● rpm: To make an RPM package (At the higher levels)

BDS Client Programming

● Uses the BDS API library for access to the BDS
Server.

● Simple to use (I hope !)
● Three access Objects: DataAccess, DataAdd,

AdminAccess
● API Version
● Note requires userId/password for access so

the connect() call has to be used first.
● Some examples in bdsExamples

Seismic data manipulation

● Fairly simple API to access seismic data and read meta-data.

● Data format independent. Two access methods: Direct data
access and Formatted data access.

● dataOpen(), dataGetBlock(), dataFormattedRead(), dataClose()

● dataGetChannelInfo() gets all metadata associated with the
data.

● Data selection scheme by Selection class that uses: StartTime
and EndTime and a set of Network, Station, Channel and
Source settings.

● Look at: bdsDataClient1, bdsDataClient2, bdsDataClient3

● Look at: Selection class

Metadata manipulation

● Can read, append and update meta-data.

● API allows sets of meta data items to be accessed via individual
calls.

● Selection scheme by Selection class that uses: StartTime and
EndTime and a set of Network, Station, Channel and Source
settings. As per data access.

● All changes validated and tracked in BDS Changes database
and synchronised with backup system. (Validation could be
improved)

● Look at bdsMetaData1.cpp

Client Scripts

● Scripts in bash/csh/python/perl etc
● Can use BDS command line programs:

bdsDataAccess, bdsImportData etc
● bdsDataAccess returns data in CSV lists
● All programs return “0” on Ok or an error

number on error.
● All error messages appear on “stderr”

BDS Data Converter programming

● BDS Seismic data converters are implemented in the
bdsDataLib as classes derived from BDS::DataFile. See
BdsDataFile.h (Currently static library).

● This introduces a standard interface to all data format
convertors.

● Add a new header and source file copied from BdsDataFile.* or
another converter that is close.

● Modify create the code to read and/or write to the data format in
question. The code also lists the formats it can handle.

● Add information on the new converter to BdsDataLib.cpp.

● Look at BdsDataFileBdrs.* example.

BDS Server Development

● The BdsServer is the heart of the system, be careful !

● Multi-threaded application with locking. Each clients connection
runs as a separate thread.

● Control class is the heart of the program, implements all API
calls.

● DataSet class handles seismic data access allowing a set of
data from multiple files to be accessed and read.

● DataStore class handles actual access to the data store.

● When new API calls are added the BdsApi API glue code can
be updated using the “make updateApi” command.

BdsServer: Structure

Config

Control

BdsAPI
(BIDL generated) DataSet

DataStore

Database
Access

BDS API modifications

● The API is written using the BOAP IDL. This is in bdsLib.

● To modify or add new functionality, increment the apiVersion
version parameter and make the changes.

● Run the “make all” command to rebuild the API library.

● Rebuild all BDS programs that use the API.

● Look at the current Bds.idl file.

● In BdsServer the “make updateApi” command can be issued to
remake BdsApi.*

● The Control class will need the changed/additional functionality
added.

BDS Database Changes
● MySQL database accessed solely by BdsServer.

● Only BdsServer and possibly BdsApi will need changing. Client
programs unaffected.

● BdsSql directory has “bds.sql” defining the schema.
“bdsData.sql” initial data entries.

● “bdsSqlUpdate-*.sql” this defines the database changes to the
version number specified.

● Version number in “Config” table “SchemaVersion” value. Must
match that in Makefile.config.

RPM packaging

● All code is packaged as binary and source RPMS.

● This allows the software to be easily updated on systems and
modifications tracked.

● Allows dependencies to be managed.

● Allows for easy installation of complete systems with all
necessary package lists.

● YUM archive at BEAM at:
http://portal.beam.ltd.uk/dist/blacknest

● “yum update” will update all packages to current.

● “make rpms” will make the new BDS packages, version number
is in Makefile.config

● bds.spec file may need modifications for new files etc

http://portal.beam.ltd.uk/dist/blacknest

SVN Access
● All of the BDS source code is available, on-line, from the main

SVN version system running at BEAM.

● To download the complete tree: “svn co
https://portal.beam.ltd.uk/svn/blacknest/bds/trunk bds”

“svn co
https://portal.beam.ltd.uk/svn/blacknest/tapeDigitiser/trunk/libbe
amdsp bds/libbeamdsp”

“svn co
https://portal.beam.ltd.uk/svn/blacknest/tapeDigitiser/trunk/libTa
peDigitiser bds/libTapeDigitiser”

● To update tree: “svn update”

● Writing (committing) to the SVN tree requires a Blacknest SVN
UserId and Password.

● To commit changes to BEAM's SVN repository use the
command: “svn commit”

https://portal.beam.ltd.uk/svn/blacknest/bds/trunk

Further Help

● BDS Documentation site
● C++ programming books/course
● BDS is still in its early stages, a lot can

change ...
● Bugs/Todo database at:

https://portal.beam.ltd.uk/support/blacknest/info

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

