
  

BDS Software Development

● BDS - Blacknest Data System
● System to store and recover seismic sensor 

data together with Meta data.
● Provide an introduction to programming in the 

BDS environment
● Requires 'C' and 'C++' development knowledge
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BDS Software areas

We will cover:
● C++ Programming
● Client Software
● Scripts
● Data Converters
● Server Development
● API modifications



  

Programming Languages

● C++ is the primary development language
● Unix shell (BASH) used for basic scripts
● Python is used in some of our test programs
● PHP is used in the example web client
● BDS API can be ported to other languages



  

C++ Programming
● Based on the 'C' language
● Has Object Orientated extensions
● Other extensions including: 

Templates,References,Default Arguments, 
Variable hiding,Read Only, Name Spaces, 
Stricter compiler

● If used in a good Object Orientated style code 
can be written at a higher level of abstraction 
and more closely match the problem domain 
and hence be easier to understand.

● If used badly can easily create unmanaged 
code.



  

C++: Classes and Objects

● Description of a new type
● Can be low level types such as Complex, 

String, List or higher level such as BdsChannel
● “struct” like semantics with list of member 

functions. (Has data and function members)
● Class declaration (Interface) in header .h file
● Class definition (Implementation) in .cpp file



  

C++ Complex number class Definition
class Complex {
public:

Complex(double real = 0.0, double imag = 0.0);

void setReal(double real);
void setImag(double imag);

double getReal();
double getImag();
double abs();

Complex operator+(Complex c);
Complex operator*(Complex c);

private:
double oreal;
double oimag;

};

Complex c1, c2(3.0, -4.1);

c1 = c1 * c2;
printf(“Complex: %f, %f\n”, c1..getReal(), c1.getImag());



  

C++ Complex Class Implementation
Complex::Complex(double real, double imag){

oreal = real;
oimag = imag;

}

double Complex::getReal(){
return oreal;

}

void Complex::setReal(double real){
oreal = real;

}

Complex Complex::operator+(Complex c){
Complex r;

r.oreal = oreal + c.oreal;
r.imag = oimag + c.oimag;
return r;

}



  

References and const
Complex operator+(Complex c){

r. oreal = oreal + c.oreal;
}

Complex operator+(Complex* c){
r. oreal = oreal + c->oreal;

}

Complex operator+(Complex& c){
r. oreal = oreal + c.oreal;

}

Complex operator+(const Complex& c){
r. oreal = oreal + c.oreal;

}

Complex operator+(const Complex& c) const {
r. oreal = oreal + c.oreal;

}



  

BEAM Class Library

● C++ is used in an Object Orientated Style
● The BEAM class library is used for basic types 

such as:
● Strings, Lists, Arrays, BOAP RPC, Threads and 

Locking, Network I/O, Database I/O, Debug
● Avoidance of pointers at higher level interfaces
● Uses CamelCase naming convention. Upper 

case first letter for types and constants. Lower 
case first letter for functions and parameters.



  

Beam Class Library: Strings

● Variable length on heap

● Efficient shared reference counted string

BString s1;

BString s2;

s1 = s1 + s2;

if((s1 == s2) || (s1 > s2)){

}

s1 = s2.subString(0, 3);

s1 = stringToUppercase(s2);

cout << s1 << “\n”;

printf(“%s\n”, s1.retStr());



  

Beam Class Library: Arrays

BArray<BString> a;

a.setSize(64);

a[32] = “Hello”;

for(int i = 0; i < a.size(); i++){

printf(“Position: %d Value: %s\n”, i, a[i].retStr());

}

a = functionAppend(a, a);

References:

BArray<BString> functionAppend(BArray<BString>& a1, Barray<BString>& a2);



  

Beam Class Library: Lists

BList<int> l;

BIter i;

l.append(1);

l.append(2);

for(l.start(i); !l.isEnd(i); l.next(i)){

printf(“Value: %d\n”, l[i]);

}



  

Beam Class Library: Error

● BError class is used to return errors from 
functions.

● BError has an error number and a string.
● Can be used in “if” statements and passed back 

up the calling function tree.
● Can be passed through exceptions.

BError err;

if(err = func()){

cerr << “Error: “ << err.getString() << “\n”;

}



  

BOAP

● Beam Object Access Protocol
● Provides simple to use object RPC mechanism
● Uses an IDL language “compiled” with bidl.
● Produces a 'C++' Client and Server side API 

library.
● Can produce API libraries for other languages



  

BOAP: Example IDL

module Bds {
apiVersion = 4;
enum Errors { ErrorOk, ErrorMisc, ErrorWarning };

class Point {
Float64 x;
Float64 y;

};

interface AdminAccess {
Error connect(in String user, in String password);
Error setUser(in String user, in String email);
Error setUserReal();
Error getVersion(out String version);

};
};



  

BOAP: Example Client Use
DataAccess bds;
BError err;
BString version;

if(err = bds.connectService("//hostName/bdsDataAccess")){
// Some error handling

}

if(err = bds.connect("test", "beam00")){
// Some error handling

}

if(err = bds.getversion(version)){
// Some error handling

}
cout << “Version: “ << version << “\n”;



  

BDS Development Libraries

● BdsLib: Main BDS API library. Primarily the BDS, BOAP based, 
API with some additional helper functions. “BDS” name space.

● BdsDataLib: BDS data access library. Includes seismic data 
converters. “BDS” name space.

● TapeDigitiser: Library from Tape digitiser project.

● BeamDsp: BEAM Digital Signal Processing library for 
TapeDigitiser import.

● Gcf: Standard GCF library



  

BDS Make environment

● The BDS build system uses a simple “Makefile” based system.

● There is a master “Makefile.config” file at the root of the 
software development tree that defines the standard build 
parameters.

● Each directory has its own Makefile to build its code that 
includes the Makefile.config. Tree of Makefiles

● The main make targets are:

● all: The default to build the code
● install: To build and install the code (DESTDIR is destination)
● clean: To clean the code
● rpm: To make an RPM package (At the higher levels)



  

BDS Client Programming

● Uses the BDS API library for access to the BDS 
Server.

● Simple to use (I hope !)
● Three access Objects: DataAccess, DataAdd, 

AdminAccess
● API Version
● Note requires userId/password for access so 

the connect() call has to be used first.
● Some examples in bdsExamples



  

Seismic data manipulation

● Fairly simple API to access seismic data and read meta-data.

● Data format independent. Two access methods: Direct data 
access and Formatted data access.

● dataOpen(), dataGetBlock(), dataFormattedRead(), dataClose()

● dataGetChannelInfo() gets all metadata associated with the 
data.

● Data selection scheme by Selection class that uses: StartTime 
and EndTime and a set of Network, Station, Channel and 
Source settings.

● Look at: bdsDataClient1, bdsDataClient2, bdsDataClient3

● Look at: Selection class



  

Metadata manipulation

● Can read, append and update meta-data.

● API allows sets of meta data items to be accessed via individual 
calls.

● Selection scheme by Selection class that uses: StartTime and 
EndTime and a set of Network, Station, Channel and Source 
settings. As per data access.

● All changes validated and tracked in BDS Changes database 
and synchronised with backup system. (Validation could be 
improved)

● Look at bdsMetaData1.cpp



  

Client Scripts

● Scripts in bash/csh/python/perl etc
● Can use BDS command line programs: 

bdsDataAccess, bdsImportData etc
● bdsDataAccess returns data in CSV lists
● All programs return “0” on Ok or an error 

number on error.
● All error messages appear on “stderr”



  

BDS Data Converter programming

● BDS Seismic data converters are implemented in the 
bdsDataLib as classes derived from BDS::DataFile. See 
BdsDataFile.h (Currently static library).

● This introduces a standard interface to all data format 
convertors.

● Add a new header and source file copied from BdsDataFile.* or 
another converter that is close.

● Modify create the code to read and/or write to the data format in 
question. The code also lists the formats it can handle.

● Add information on the new converter to BdsDataLib.cpp.

● Look at BdsDataFileBdrs.* example.



  

BDS Server Development

● The BdsServer is the heart of the system, be careful !

● Multi-threaded application with locking. Each clients connection 
runs as a separate thread.

● Control class is the heart of the program, implements all API 
calls.

● DataSet class handles seismic data access allowing a set of 
data from multiple files to be accessed and read.

● DataStore class handles actual access to the data store.

● When new API calls are added the BdsApi API glue code can 
be updated using the “make updateApi” command.
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BDS API modifications

● The API is written using the BOAP IDL. This is in bdsLib.

● To modify or add new functionality, increment the apiVersion 
version parameter and make the changes.

● Run the “make all” command to rebuild the API library.

● Rebuild all BDS programs that use the API.

● Look at the current Bds.idl file.

● In BdsServer the “make updateApi” command can be issued to 
remake BdsApi.*

● The Control class will need the changed/additional functionality 
added.



  

BDS Database Changes
● MySQL database accessed solely by BdsServer.

● Only BdsServer and possibly BdsApi will need changing. Client 
programs unaffected.

● BdsSql directory has “bds.sql” defining the schema. 
“bdsData.sql” initial data entries.

● “bdsSqlUpdate-*.sql” this defines the database changes to the 
version number specified.

● Version number in “Config” table “SchemaVersion” value. Must 
match that in Makefile.config.



  

RPM packaging

● All code is packaged as binary and source RPMS.

● This allows the software to be easily updated on systems and 
modifications tracked.

● Allows dependencies to be managed.

● Allows for easy installation of complete systems with all 
necessary package lists.

● YUM archive at BEAM at: 
http://portal.beam.ltd.uk/dist/blacknest

● “yum update” will update all packages to current.

● “make rpms” will make the new BDS packages, version number 
is in Makefile.config

● bds.spec file may need modifications for new files etc

http://portal.beam.ltd.uk/dist/blacknest


  

SVN Access
● All of the BDS source code is available, on-line, from the main 

SVN version system running at BEAM.

● To download the complete tree: “svn co 
https://portal.beam.ltd.uk/svn/blacknest/bds/trunk bds”

“svn co 
https://portal.beam.ltd.uk/svn/blacknest/tapeDigitiser/trunk/libbe
amdsp bds/libbeamdsp”

“svn co 
https://portal.beam.ltd.uk/svn/blacknest/tapeDigitiser/trunk/libTa
peDigitiser bds/libTapeDigitiser”

● To update tree: “svn update”

● Writing (committing) to the SVN tree requires a Blacknest SVN 
UserId and Password.

● To commit changes to BEAM's SVN repository use the 
command: “svn commit”

https://portal.beam.ltd.uk/svn/blacknest/bds/trunk


  

Further Help

● BDS Documentation site
● C++ programming books/course
● BDS is still in its early stages, a lot can 

change ...
● Bugs/Todo database at: 

https://portal.beam.ltd.uk/support/blacknest/info
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